A compensator characterization of point processes on topological lattices.
Let be a zero-mean martingale with canonical filtration and stochastically -bounded increments which means that a.s. for all n ≥ 1, t > 0 and some square-integrable distribution H on [0,∞). Let . It is the main result of this paper that each such martingale is a.s. convergent on V < ∞ and recurrent on V = ∞, i.e. for some c > 0. This generalizes a recent result by Durrett, Kesten and Lawler [4] who consider the case of only finitely many square-integrable increment distributions....
Les distributions non paramétriques de survie trouvent, de plus en plus, des applications dans des domaines très variés, à savoir : théorie de fiabilité et analyse de survie, files d’attente, maintenance, gestion de stock, théorie de l’économie, L’objet de ce travail est d’utiliser les bornes inférieures et supérieures (en terme de la moyenne) des fonctions de fiabilité appartenant aux classes de distribution de type et , présentées par Sengupta (1994), pour l’évaluation de certaines caractéristiques....
Les distributions non paramétriques de survie trouvent, de plus en plus, des applications dans des domaines très variés, à savoir: théorie de fiabilité et analyse de survie, files d'attente, maintenance, gestion de stock, théorie de l'économie, ... L'objet de ce travail est d'utiliser les bornes inférieures et supérieures (en terme de la moyenne) des fonctions de fiabilité appartenant aux classes de distribution de type IFR, DFR, NBU et NWU, présentées par Sengupta (1994), pour l'évaluation de...
The paper deals with several questions of the diffusion approximation. The goal of this paper is to create the general method of reducting the dimension of the model with the aid of the diffusion approximation. Especially, two dimensional random variables are approximated by one-dimensional diffusion process by replacing one of its coordinates by a certain characteristic, e.g. by its stationary expectation. The suggested method is used for several different systems. For instance, the method is applicable...
Let be a Lévy process started at , with Lévy measure . We consider the first passage time of to level , and the overshoot and the undershoot. We first prove that the Laplace transform of the random triple satisfies some kind of integral equation. Second, assuming that admits exponential moments, we show that converges in distribution as , where denotes a suitable renormalization of .
Let (Xt, t ≥ 0) be a Lévy process started at 0, with Lévy measure ν. We consider the first passage time Tx of (Xt, t ≥ 0) to level x > 0, and Kx := XTx - x the overshoot and Lx := x- XTx- the undershoot. We first prove that the Laplace transform of the random triple (Tx,Kx,Lx) satisfies some kind of integral equation. Second, assuming that ν admits exponential moments, we show that converges in distribution as x → ∞, where denotes a suitable renormalization of Tx.
This paper describes a new method for generating stationary integer-valued time series from renewal processes. We prove that if the lifetime distribution of renewal processes is nonlattice and the probability generating function is rational, then the generated time series satisfy causal and invertible ARMA type stochastic difference equations. The result provides an easy method for generating integer-valued time series with ARMA type autocovariance functions. Examples of generating binomial ARMA(p,p-1)...