An upper bound for the G.C.D. of two linear recurring sequences
Mathematica Slovaca (2003)
- Volume: 53, Issue: 1, page 21-42
- ISSN: 0139-9918
Access Full Article
topHow to cite
topFuchs, Clemens. "An upper bound for the G.C.D. of two linear recurring sequences." Mathematica Slovaca 53.1 (2003): 21-42. <http://eudml.org/doc/31971>.
@article{Fuchs2003,
author = {Fuchs, Clemens},
journal = {Mathematica Slovaca},
keywords = {estimation of gcd; linear recurring sequences},
language = {eng},
number = {1},
pages = {21-42},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {An upper bound for the G.C.D. of two linear recurring sequences},
url = {http://eudml.org/doc/31971},
volume = {53},
year = {2003},
}
TY - JOUR
AU - Fuchs, Clemens
TI - An upper bound for the G.C.D. of two linear recurring sequences
JO - Mathematica Slovaca
PY - 2003
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 53
IS - 1
SP - 21
EP - 42
LA - eng
KW - estimation of gcd; linear recurring sequences
UR - http://eudml.org/doc/31971
ER -
References
top- BUGEAUD Y.-CORVAJA P.-ZANNIER U., An upper bound for the G.C.D. of and , Math. Z. (To appear). MR1953049
- CORVAJA P.-ZANNIER U., Diophantine equations with power sums and universal Hilbert sets, Indag. Math. (N.S.) 9 (1998), 317-332. (1998) Zbl0923.11103MR1692189
- CORVAJA P.-ZANNIER U., Finiteness of integral values for the ratio of two linear recurrences, Invent. Math. 149 (2002), 431-451. Zbl1026.11021MR1918678
- EVERTSE J.-H., An improvement of the Quantitative Subspace Theorem, Compositio Math. 101 (1996), 225-311. (1996) Zbl0856.11030MR1394517
- VAN DER POORTEN A. J., Some facts that should be better known, especially about rational functions, In: Number Theory and Applications. Proc. NATO ASI, Banff/Can. 1988. NATO ASI Ser., Ser. C 265, Kluwer Acad. Publ., Dordrecht, 1989, pp. 497-528. (1988) MR1123092
- VAN DER POORTEN A. J., Solution de la conjecture de Pisot sur le quotient de Hadamard de deux fractions rationnelles, C. R. Acad. Sci. Paris Ser. I Math. 306 (1998), 97-102. (1998) MR0929097
- SCHMIDT W. M., Diophantine Approximation, Lecture Notes in Math. 785, Springer Verlag, Berlin-Heidelberg-New York, 1980. (1980) Zbl0421.10019MR0568710
- SCHMIDT W. M., Diophantine Approximations and Diophantine Equations, Lecture Notes in Math. 1467, Springer Verlag, Berlin, 1991. (1991) Zbl0754.11020MR1176315
- SCHMIDT W. M., The zero multiplicity of linear recurrence sequences, Acta Math. 182 (1999), 243-282. (1999) Zbl0974.11013MR1710183
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.