Diophantine triples with values in binary recurrences
Clemens Fuchs; Florian Luca; Laszlo Szalay
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2008)
- Volume: 7, Issue: 4, page 579-608
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topFuchs, Clemens, Luca, Florian, and Szalay, Laszlo. "Diophantine triples with values in binary recurrences." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 7.4 (2008): 579-608. <http://eudml.org/doc/272291>.
@article{Fuchs2008,
abstract = {In this paper, we study triples $a, b$ and $c$ of distinct positive integers such that $ab+1, ac+1$ and $bc+1$ are all three members of the same binary recurrence sequence.},
author = {Fuchs, Clemens, Luca, Florian, Szalay, Laszlo},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {recurrence sequences; Diophantine tuples; S-unit equations},
language = {eng},
number = {4},
pages = {579-608},
publisher = {Scuola Normale Superiore, Pisa},
title = {Diophantine triples with values in binary recurrences},
url = {http://eudml.org/doc/272291},
volume = {7},
year = {2008},
}
TY - JOUR
AU - Fuchs, Clemens
AU - Luca, Florian
AU - Szalay, Laszlo
TI - Diophantine triples with values in binary recurrences
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2008
PB - Scuola Normale Superiore, Pisa
VL - 7
IS - 4
SP - 579
EP - 608
AB - In this paper, we study triples $a, b$ and $c$ of distinct positive integers such that $ab+1, ac+1$ and $bc+1$ are all three members of the same binary recurrence sequence.
LA - eng
KW - recurrence sequences; Diophantine tuples; S-unit equations
UR - http://eudml.org/doc/272291
ER -
References
top- [1] Y. Bugeaud, P. Corvaja and U. Zannier, An upper bound for the G.C.D. of and , Math. Z. 243 (2003), 79–84. Zbl1021.11001MR1953049
- [2] Y. Bugeaud and A. Dujella, On a problem of Diophantus for higher powers, Math. Proc. Cambridge Philos. Soc.135 (2003), 1–10. Zbl1042.11019MR1990827
- [3] Y. Bugeaud and F. Luca, On the period of the continued fraction expansion of square root of , Indag. Math. (N.S.) 16 (2005), 21–35. Zbl1135.11005MR2138048
- [4] P. Corvaja and U. Zannier, Diophantine equations with power sums and Universal Hilbert Sets, Indag. Math. (N.S.) 9 (1998), 317–332. Zbl0923.11103MR1692189
- [5] P. Corvaja and U. Zannier, A lower bound for the height of a rational function at S-unit points, Monatsh. Math.144 (2005), 203–224. Zbl1086.11035MR2130274
- [6] P. Corvaja and U. Zannier, S-unit points on analytic hypersurfaces, Ann. Sci. École Norm. Sup. (4) 38 (2005), 76–92. Zbl1118.11033MR2136482
- [7] A. Dujella, There are only finitely many Diophantine quintuples, J. Reine Angew. Math.566 (2004), 183–214. Zbl1037.11019MR2039327
- [8] A. Dujella, Diophantine -tuples, webpage available at http://web.math.hr/duje/ dtuples.html. Zbl1085.11019
- [9] C. Fuchs, An upper bound for the G.C.D. of two linear recurring sequences, Math. Slovaca 53 (2003), 21–42. Zbl1048.11025MR1964201
- [10] C. Fuchs, Diophantine problems with linear recurrences via the Subspace Theorem, Integers 5 (2005), #A08. Zbl1140.11337MR2191754
- [11] C. Fuchs, Polynomial-exponential equations involving multirecurrences, Studia Sci. Math. Hungar., to appear. Zbl1224.11060MR2657024
- [12] C. Fuchs and A. Scremin, Polynomial-exponential equations involving several linear recurrences, Publ. Math. Debrecen65 (2004), 149–172. Zbl1064.11031MR2075259
- [13] W. J. LeVeque, On the equation , Acta Arith.9 (1964), 209–219. Zbl0127.27201MR169813
- [14] F. Luca, On shifted products which are powers, Glas. Mat. Ser. III40 (2005), 13–20. Zbl1123.11011MR2195856
- [15] F. Luca, On the greatest common divisor of and with and near -units, Monatsh. Math.146 (2005), 239–256. Zbl1107.11029MR2184226
- [16] F. Luca and T. N. Shorey, Diophantine equations with products of consecutive terms in Lucas sequences, II, Acta Arith., to appear. Zbl1230.11041MR2413365
- [17] F. Luca and L. Szalay, Fibonacci Diophantine triples, Glas. Mat. Ser. III43 (2008), 252–264. Zbl1218.11020MR2460699
- [18] H. P. Schlickewei and W. M. Schmidt, Linear equations in members of recurrence sequences, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 20 (1993), 219–246. Zbl0803.11010MR1233637
- [19] W. M. Schmidt, Linear Recurrence Sequences and Polynomial-Exponential Equations, In: “Diophantine Approximation, Proc. of the C.I.M.E. Conference, Cetraro (Italy) 2000”, F. Amoroso, U. Zannier (eds.), Springer-Verlag, LN 1819, 2003, 171–247. Zbl1034.11011MR2009831
- [20] T. N. Shorey and R. Tijdeman, “Exponential Diophantine Equations”, Cambridge Univ. Press, Cambridge, 1986. Zbl1156.11015MR891406
- [21] J. Silverman, Generalized greatest common divisors, divisibility sequences, and Vojta’s conjecture for blowups, Monats. Math.145 (2005), 333–350. Zbl1197.11070MR2162351
- [22] K. R. Yu, -adic logarithmic forms and group varieties, II, Acta Arith.89 (1999), 337–378. Zbl0928.11031MR1703864
- [23] U. Zannier, “Some applications of Diophantine Approximation to Diophantine Equations (with special emphasis on the Schmidt Subspace Theorem)”, Forum, Udine, 2003.
- [24] U. Zannier, Diophantine equations with linear recurrences. An overview of some recent progress, J. Théor. Nombres Bordeaux 17 (2005), 423–435. Zbl1162.11330MR2152233
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.