Diophantine triples with values in binary recurrences

Clemens Fuchs; Florian Luca; Laszlo Szalay

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2008)

  • Volume: 7, Issue: 4, page 579-608
  • ISSN: 0391-173X

Abstract

top
In this paper, we study triples a , b and c of distinct positive integers such that a b + 1 , a c + 1 and b c + 1 are all three members of the same binary recurrence sequence.

How to cite

top

Fuchs, Clemens, Luca, Florian, and Szalay, Laszlo. "Diophantine triples with values in binary recurrences." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 7.4 (2008): 579-608. <http://eudml.org/doc/272291>.

@article{Fuchs2008,
abstract = {In this paper, we study triples $a, b$ and $c$ of distinct positive integers such that $ab+1, ac+1$ and $bc+1$ are all three members of the same binary recurrence sequence.},
author = {Fuchs, Clemens, Luca, Florian, Szalay, Laszlo},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {recurrence sequences; Diophantine tuples; S-unit equations},
language = {eng},
number = {4},
pages = {579-608},
publisher = {Scuola Normale Superiore, Pisa},
title = {Diophantine triples with values in binary recurrences},
url = {http://eudml.org/doc/272291},
volume = {7},
year = {2008},
}

TY - JOUR
AU - Fuchs, Clemens
AU - Luca, Florian
AU - Szalay, Laszlo
TI - Diophantine triples with values in binary recurrences
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2008
PB - Scuola Normale Superiore, Pisa
VL - 7
IS - 4
SP - 579
EP - 608
AB - In this paper, we study triples $a, b$ and $c$ of distinct positive integers such that $ab+1, ac+1$ and $bc+1$ are all three members of the same binary recurrence sequence.
LA - eng
KW - recurrence sequences; Diophantine tuples; S-unit equations
UR - http://eudml.org/doc/272291
ER -

References

top
  1. [1] Y. Bugeaud, P. Corvaja and U. Zannier, An upper bound for the G.C.D. of a n - 1 and b n - 1 , Math. Z. 243 (2003), 79–84. Zbl1021.11001MR1953049
  2. [2] Y. Bugeaud and A. Dujella, On a problem of Diophantus for higher powers, Math. Proc. Cambridge Philos. Soc.135 (2003), 1–10. Zbl1042.11019MR1990827
  3. [3] Y. Bugeaud and F. Luca, On the period of the continued fraction expansion of square root of 2 2 n + 1 + 1 , Indag. Math. (N.S.) 16 (2005), 21–35. Zbl1135.11005MR2138048
  4. [4] P. Corvaja and U. Zannier, Diophantine equations with power sums and Universal Hilbert Sets, Indag. Math. (N.S.) 9 (1998), 317–332. Zbl0923.11103MR1692189
  5. [5] P. Corvaja and U. Zannier, A lower bound for the height of a rational function at S-unit points, Monatsh. Math.144 (2005), 203–224. Zbl1086.11035MR2130274
  6. [6] P. Corvaja and U. Zannier, S-unit points on analytic hypersurfaces, Ann. Sci. École Norm. Sup. (4) 38 (2005), 76–92. Zbl1118.11033MR2136482
  7. [7] A. Dujella, There are only finitely many Diophantine quintuples, J. Reine Angew. Math.566 (2004), 183–214. Zbl1037.11019MR2039327
  8. [8] A. Dujella, Diophantine m -tuples, webpage available at http://web.math.hr/ duje/ dtuples.html. Zbl1085.11019
  9. [9] C. Fuchs, An upper bound for the G.C.D. of two linear recurring sequences, Math. Slovaca 53 (2003), 21–42. Zbl1048.11025MR1964201
  10. [10] C. Fuchs, Diophantine problems with linear recurrences via the Subspace Theorem, Integers 5 (2005), #A08. Zbl1140.11337MR2191754
  11. [11] C. Fuchs, Polynomial-exponential equations involving multirecurrences, Studia Sci. Math. Hungar., to appear. Zbl1224.11060MR2657024
  12. [12] C. Fuchs and A. Scremin, Polynomial-exponential equations involving several linear recurrences, Publ. Math. Debrecen65 (2004), 149–172. Zbl1064.11031MR2075259
  13. [13] W. J. LeVeque, On the equation y m = f ( x ) , Acta Arith.9 (1964), 209–219. Zbl0127.27201MR169813
  14. [14] F. Luca, On shifted products which are powers, Glas. Mat. Ser. III40 (2005), 13–20. Zbl1123.11011MR2195856
  15. [15] F. Luca, On the greatest common divisor of u - 1 and v - 1 with u and v near 𝒮 -units, Monatsh. Math.146 (2005), 239–256. Zbl1107.11029MR2184226
  16. [16] F. Luca and T. N. Shorey, Diophantine equations with products of consecutive terms in Lucas sequences, II, Acta Arith., to appear. Zbl1230.11041MR2413365
  17. [17] F. Luca and L. Szalay, Fibonacci Diophantine triples, Glas. Mat. Ser. III43 (2008), 252–264. Zbl1218.11020MR2460699
  18. [18] H. P. Schlickewei and W. M. Schmidt, Linear equations in members of recurrence sequences, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 20 (1993), 219–246. Zbl0803.11010MR1233637
  19. [19] W. M. Schmidt, Linear Recurrence Sequences and Polynomial-Exponential Equations, In: “Diophantine Approximation, Proc. of the C.I.M.E. Conference, Cetraro (Italy) 2000”, F. Amoroso, U. Zannier (eds.), Springer-Verlag, LN 1819, 2003, 171–247. Zbl1034.11011MR2009831
  20. [20] T. N. Shorey and R. Tijdeman, “Exponential Diophantine Equations”, Cambridge Univ. Press, Cambridge, 1986. Zbl1156.11015MR891406
  21. [21] J. Silverman, Generalized greatest common divisors, divisibility sequences, and Vojta’s conjecture for blowups, Monats. Math.145 (2005), 333–350. Zbl1197.11070MR2162351
  22. [22] K. R. Yu, p -adic logarithmic forms and group varieties, II, Acta Arith.89 (1999), 337–378. Zbl0928.11031MR1703864
  23. [23] U. Zannier, “Some applications of Diophantine Approximation to Diophantine Equations (with special emphasis on the Schmidt Subspace Theorem)”, Forum, Udine, 2003. 
  24. [24] U. Zannier, Diophantine equations with linear recurrences. An overview of some recent progress, J. Théor. Nombres Bordeaux 17 (2005), 423–435. Zbl1162.11330MR2152233

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.