Diophantine representation of the decimal expansions of e and π

Christoph Baxa

Mathematica Slovaca (2000)

  • Volume: 50, Issue: 5, page 531-539
  • ISSN: 0232-0525

How to cite

top

Baxa, Christoph. "Diophantine representation of the decimal expansions of $e$ and $\pi $." Mathematica Slovaca 50.5 (2000): 531-539. <http://eudml.org/doc/31979>.

@article{Baxa2000,
author = {Baxa, Christoph},
journal = {Mathematica Slovaca},
keywords = {Hilbert's Tenth Problem; Diophantine representation; decimal expansion of },
language = {eng},
number = {5},
pages = {531-539},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Diophantine representation of the decimal expansions of $e$ and $\pi $},
url = {http://eudml.org/doc/31979},
volume = {50},
year = {2000},
}

TY - JOUR
AU - Baxa, Christoph
TI - Diophantine representation of the decimal expansions of $e$ and $\pi $
JO - Mathematica Slovaca
PY - 2000
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 50
IS - 5
SP - 531
EP - 539
LA - eng
KW - Hilbert's Tenth Problem; Diophantine representation; decimal expansion of
UR - http://eudml.org/doc/31979
ER -

References

top
  1. BAILEY D. H.-BORWEIN J. M.-BORWEIN P. B.-PLOUFFE S., The quest for Pi, Math. Intell. 19 (1997), 50-57. (1997) Zbl0878.11002MR1439159
  2. BAXA C., A note on Diophantine representations, Amer. Math. Monthly 100 (1993), 138-143. (1993) Zbl0805.11085MR1212399
  3. DAVIS M., Hilberťs Tenth Problem is unsolvable, Amer. Math. Monthly 80 (1973), 233-269 (Reprinted as Appendix 2 in: DAVIS, M.: Computability and Unsolvability, Dover, New York, 1982). (1973) MR0317916
  4. DAVIS M.-MAТIJASEVIČ, YU. V.-ROBINSON J., Hilberťs Tenth Problem. Diophantine equations: Positive aspects of a negative solution, In: Mathematical Developments Arising from Hilbert Problems (F. E. Browder, ed.), Amer. Math. Soc, Providence, RI, 1976. (1976) 
  5. DAVIS M.-PUТNAM H.-ROBINSON J., The decision problem for exponential Diphantine equations, Ann. Matһ. 74 (1961), 425-436. (1961) MR0133227
  6. JONES J. P., Diophantine representation of Mersejine and Fermat primes, Acta Arith. 35 (1979), 209-221. (1979) MR0550293
  7. JONES J. P., Universal Diophantine equation, J. Symb. Logic 47 (1982), 549-571. (1982) Zbl0492.03018MR0666816
  8. JONES J. P.-MAТIJASEVIČ, JU. V., A new representation for the symmetric binomial coefficient and its applications, Ann. Sci. Math. Québec 6 (1982), 81-97. (1982) Zbl0499.03028MR0672122
  9. JONES J. P.-MAТIJASEVIČ, YU. V., Proof of recursive unsolvability of Hilberťs Tenth Problem, Amer. Math. Monthly 98 (1991), 689-709. (1991) MR1130680
  10. JONES J. P.-SAТO D.-WADA H.-WIENS D., Diophantine representatюn of the set of prime numbers, Amer. Math. Monthly 83 (1976), 449-464. (1976) MR0414514
  11. MANIN, YU. I., A Course in Mathematical Logic, Springer, New York, 1977. (1977) Zbl0383.03002MR0457126
  12. MATIJASEVIČ, JU. V., Enumerable sets are Diophantine, Soviet Math. Doklady 11 (1970), 354-358. (1970) 
  13. MATIJASEVIČ, JU. V., Diophantine representation of the set of prime numbers, Soviet Math. Doklady 12 (1971), 249-254. (1971) 
  14. MATIYASEVICH, YU. V., Hilberťs Tenth Problem, MIT Press, Cambridge-Massachusetts, 1993. (1993) MR1244324
  15. PUTNAM H., An unsolvable problem in number theory, J. Symb. Logic 25 (1960), 220-232. (1960) MR0158825
  16. SMORYŃSKI C., Logical Number Theory I, Springer, Berlin, 1991. (1991) Zbl0759.03002MR1106853

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.