A note on pseudoprimes with respect to abelian linear recurring sequence
Mathematica Slovaca (1996)
- Volume: 46, Issue: 2-3, page 173-176
- ISSN: 0232-0525
Access Full Article
topHow to cite
topMarko, František. "A note on pseudoprimes with respect to abelian linear recurring sequence." Mathematica Slovaca 46.2-3 (1996): 173-176. <http://eudml.org/doc/32005>.
@article{Marko1996,
author = {Marko, František},
journal = {Mathematica Slovaca},
keywords = {abelian linear recurring sequences; pseudoprime; Carmichael number; Schinzel's conjecture H},
language = {eng},
number = {2-3},
pages = {173-176},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {A note on pseudoprimes with respect to abelian linear recurring sequence},
url = {http://eudml.org/doc/32005},
volume = {46},
year = {1996},
}
TY - JOUR
AU - Marko, František
TI - A note on pseudoprimes with respect to abelian linear recurring sequence
JO - Mathematica Slovaca
PY - 1996
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 46
IS - 2-3
SP - 173
EP - 176
LA - eng
KW - abelian linear recurring sequences; pseudoprime; Carmichael number; Schinzel's conjecture H
UR - http://eudml.org/doc/32005
ER -
References
top- ADAMS W.-SHANKS D., Strong primality tests that are not sufficient, Math. Comp. 39 (1982), 255-300. (1982) Zbl0492.10005MR0658231
- JAKUBEC S.-NEMOGA K., On a conjecture concerning sequences of the third order, Math. Slovaca 36 (1986), 85-89. (1986) Zbl0583.10007MR0832373
- MARKО F., Schinzeľs conjecture H and divisiЫlity in abelian linear recurring sequences, Colloq. Math. LIX (1990), 1-7. (1990)
- MARKО F., Pseudoprimes with Respect to Linear Recurring Sequences, (Slovak). Thesis, SAV, Bratislava, 1991. (1991)
- MILLER J. О P.-SPENCER BRОWN G., SPENCER BRОWN D. J., The identification of prime numbers, (Unpublished).
- PERRIN R., Item 1484, Ľintermédiaire des math. 6 (1899), 76-77.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.