Existence of positive solutions to vector boundary value problems. II.

Ilja Martišovitš

Mathematica Slovaca (1999)

  • Volume: 49, Issue: 5, page 531-562
  • ISSN: 0139-9918

How to cite

top

Martišovitš, Ilja. "Existence of positive solutions to vector boundary value problems. II.." Mathematica Slovaca 49.5 (1999): 531-562. <http://eudml.org/doc/32065>.

@article{Martišovitš1999,
author = {Martišovitš, Ilja},
journal = {Mathematica Slovaca},
keywords = {shooting method; positive solution; Brouwer degree},
language = {eng},
number = {5},
pages = {531-562},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Existence of positive solutions to vector boundary value problems. II.},
url = {http://eudml.org/doc/32065},
volume = {49},
year = {1999},
}

TY - JOUR
AU - Martišovitš, Ilja
TI - Existence of positive solutions to vector boundary value problems. II.
JO - Mathematica Slovaca
PY - 1999
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 49
IS - 5
SP - 531
EP - 562
LA - eng
KW - shooting method; positive solution; Brouwer degree
UR - http://eudml.org/doc/32065
ER -

References

top
  1. BEBERNES J. W., Periodic boundary value problems for systems of second order differential equations, J. Differential Equations 13 (1973), 32-47. (1973) Zbl0284.34016MR0340700
  2. FECKAN M., Positive solutions of a certain type of two-point boundary value problem, Math. Slovaca 41 (1991), 179-187. (1991) MR1108580
  3. FULIER J., On a nonlinear two-point boundary value problem, Acta Math. Univ. Comenian. LVIII-LIX (1990), 17-35. (1990) MR1120353
  4. GAINES R. E.-SANTANILLA J., A coincidence theorem in convex sets with applications to periodic solutions of ordinary differential equations, Rocky Mountain J. Math. 12 (1982), G69-G78. (1982) Zbl0508.34030MR0683861
  5. GREGUŠ M.-ŠVEC M.-ŠEDA V., Ordinary Differential Equations, Alfa, Bratislava, 1985. (1985) 
  6. HALE J. K., Ordinary Differential Equations, Wiley-Interscience, New York, 19G9. (19G9) MR0419901
  7. NIETO J. J., Existence of solutions in a cone for nonlinear alternative problems, Proc. Amer. Math. Soc. 94 (1985), 433-436. (1985) Zbl0585.47050MR0787888
  8. MARTIŠOVITŠ I., Existence of positive solutions to vector boundary value problems I, Math. Slovaca 49 (1999), 453-479. (1999) Zbl0952.34017MR1719739

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.