Existence of positive solutions to vector boundary value problems. I.

Ilja Martišovitš

Mathematica Slovaca (1999)

  • Volume: 49, Issue: 4, page 453-479
  • ISSN: 0139-9918

How to cite

top

Martišovitš, Ilja. "Existence of positive solutions to vector boundary value problems. I.." Mathematica Slovaca 49.4 (1999): 453-479. <http://eudml.org/doc/34501>.

@article{Martišovitš1999,
author = {Martišovitš, Ilja},
journal = {Mathematica Slovaca},
keywords = {shooting method; positive solution; Brouwer degree},
language = {eng},
number = {4},
pages = {453-479},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Existence of positive solutions to vector boundary value problems. I.},
url = {http://eudml.org/doc/34501},
volume = {49},
year = {1999},
}

TY - JOUR
AU - Martišovitš, Ilja
TI - Existence of positive solutions to vector boundary value problems. I.
JO - Mathematica Slovaca
PY - 1999
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 49
IS - 4
SP - 453
EP - 479
LA - eng
KW - shooting method; positive solution; Brouwer degree
UR - http://eudml.org/doc/34501
ER -

References

top
  1. BEBERNES J. W., Periodic boundary value problems for systems of second order differential equations, J. Differential Equations 13 (1973), 32-47. (1973) Zbl0284.34016MR0340700
  2. FECKAN M., Positive solutions of a certain type of two-point boundary value problem, Math. Slovaca41 (1991), 179-187. (1991) MR1108580
  3. FULIER J., On a nonlinear two-point boundary value problem, Acta Math. Univ. Comenian. LVIII-LIX (1990), 17-35. (1990) MR1120353
  4. GAINES R. E.-SANTANILLA J., A coincidence theorem in convex sets with applications to periodic solutions of ordinary differential equations, Rocky Mountain J. Math. 12 (1982), 669-678. (1982) Zbl0508.34030MR0683861
  5. GREGUS M.-SVEC M.-SEDA V., Ordinary Differential Equations, Alfa, Bratislava, 1985. (1985) 
  6. HALE J. K., Ordinary Differential Equations, Wiley-Interscience, New York, 1969. (1969) Zbl0186.40901MR0419901
  7. NIETO J. J., Existence of solutions in a cone for nonlinear alternative problems, Proc. Amer. Math. Soc. 94 (1985), 433-436. (1985) Zbl0585.47050MR0787888

NotesEmbed ?

top

You must be logged in to post comments.