Direct product factors in GMV-algebras

Jiří Rachůnek; Dana Šalounová

Mathematica Slovaca (2005)

  • Volume: 55, Issue: 4, page 399-407
  • ISSN: 0139-9918

How to cite

top

Rachůnek, Jiří, and Šalounová, Dana. "Direct product factors in GMV-algebras." Mathematica Slovaca 55.4 (2005): 399-407. <http://eudml.org/doc/32076>.

@article{Rachůnek2005,
author = {Rachůnek, Jiří, Šalounová, Dana},
journal = {Mathematica Slovaca},
keywords = {pseudo-MV algebra; GMV-algebra; direct product; projectible GMV-algebra},
language = {eng},
number = {4},
pages = {399-407},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Direct product factors in GMV-algebras},
url = {http://eudml.org/doc/32076},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Rachůnek, Jiří
AU - Šalounová, Dana
TI - Direct product factors in GMV-algebras
JO - Mathematica Slovaca
PY - 2005
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 55
IS - 4
SP - 399
EP - 407
LA - eng
KW - pseudo-MV algebra; GMV-algebra; direct product; projectible GMV-algebra
UR - http://eudml.org/doc/32076
ER -

References

top
  1. BIGARD A.-KEIMEL K.-WOLFENSTEIN S., Groupes et Anneaux Réticulés, Springer Verlag, Berlin-Heidelberg-New York, 1977. (1977) Zbl0384.06022MR0552653
  2. CHANG C. C., Algebraic analysis of many valued logic, Trans. Amer. Math. Soc. 88 (1958), 467-490. (1958) MR0094302
  3. CIGNOLI R. O. L.-D`OTTAVIANO I. M. L.-MUNDICI D., Algebraic Foundation of Many-Valued Reasoning, Kluwer Acad. Publ., Dordrecht-Boston-London, 2000. MR1786097
  4. DVUREČENSKIJ A., Pseudo MV-algebras are intervals in t-groups, J. Aust. Math. Soc. 70 (2002), 427-445. MR1902211
  5. DVUREČENSKIJ A., States on pseudo MV-algebras, Studia Logica 68 (2001), 301-327. Zbl1081.06010MR1865858
  6. DVUREČENSKIJ A.-PULMANNOVÁ S., New Trends in Quantum Structures, Kluwer Acad. Publ., Dordrecht-Boston-London, 2000. Zbl0987.81005MR1861369
  7. GEORGESCU G.-IORGULESCU A., Pseudo MV-algebras, Mult.-Valued Log. 6 (2001), 95-135. Zbl1014.06008MR1817439
  8. GLASS A. M. W., Partially Ordered Groups, World Scientific, Singapore-New Jersey-London-Hong Kong, 1999. (1999) Zbl0933.06010MR1791008
  9. HÁJEK P., Metamathematics of Fuzzy Logic, Kluwer, Amsterdam, 1998. (1998) Zbl0937.03030MR1900263
  10. JAKUBÍK J., Direct product decompositions of pseudo MV-algebras, Arch. Math. (Brno) 37 (2001), 131-142. Zbl1070.06003MR1838410
  11. KOVÁŘ T., A General Theory of Dually Residuated Lattice Ordered Monoids, Thesis, Palacky Univ., Olomouc, 1996. (1996) 
  12. KÜHR J., Ideals of noncommutative DRl-monoids, Czechoslovak Math. J. 55 (2005), 97-111. MR2121658
  13. KÜHR J., A generalization of GMV-algebras, Mult.-Valued Log. (To appear). 
  14. RACHŮNEK J., A non-commutative generalization of MV-algebras, Czechoslovak Math. J. 52(127) (2002), 255-273. Zbl1012.06012MR1905434
  15. RACHŮNEK J., Prime spectra of non-commutative generalizations of MV-algebras, Algebra Universalis 48 (2002), 151-169. Zbl1058.06015MR1929902
  16. RACHŮNEK J.-ŠALOUNOVÁ D., Direct decompositions of dually residuated lattice ordered monoids, Discuss. Math. Gen. Algebra Appl. 24 (2004), 63-74. Zbl1068.06016MR2118156

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.