On 5 - and 6 -decomposable finite groups

Ali Reza Ashrafi; Yao Qing Zhao

Mathematica Slovaca (2003)

  • Volume: 53, Issue: 4, page 373-383
  • ISSN: 0139-9918

How to cite

top

Ashrafi, Ali Reza, and Zhao, Yao Qing. "On $5$- and $6$-decomposable finite groups." Mathematica Slovaca 53.4 (2003): 373-383. <http://eudml.org/doc/32162>.

@article{Ashrafi2003,
author = {Ashrafi, Ali Reza, Zhao, Yao Qing},
journal = {Mathematica Slovaca},
keywords = {unions of conjugacy classes; -decomposable groups},
language = {eng},
number = {4},
pages = {373-383},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {On $5$- and $6$-decomposable finite groups},
url = {http://eudml.org/doc/32162},
volume = {53},
year = {2003},
}

TY - JOUR
AU - Ashrafi, Ali Reza
AU - Zhao, Yao Qing
TI - On $5$- and $6$-decomposable finite groups
JO - Mathematica Slovaca
PY - 2003
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 53
IS - 4
SP - 373
EP - 383
LA - eng
KW - unions of conjugacy classes; -decomposable groups
UR - http://eudml.org/doc/32162
ER -

References

top
  1. ASHRAFI A. R.-SAHRAEI H., On finite groups whose every normal subgroup is a union of the same number of conjugacy classes, Vietnam J. Math. 30 (2002), 289-294. Zbl1018.20026MR1933567
  2. ASHRAFI A. R.-SAHRAEI H., Subgroups which are a union of a given number of conjugacy classes, In: Groups, St. Andrews 2001, Oxford University, Oxford, 2001. Zbl1067.20033MR2051512
  3. BERKOVICH, YA. G.-ZHMUD E., Characters of Finite Groups, Part 2. Transl. Math. Monographs 181, Amer. Math. Soc, Providence, RI, 1999. (1999) MR1650707
  4. COLLINS M. J., Representations and Characters of Finite Groups, Cambridge University Press, Cambridge, 1990. (1990) Zbl0703.20001MR1050762
  5. CONWAY J. H.-CURTIS R. T.-NORTON S. P.-PARKER R. A.-WILSON R. A., Atlas of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Groups, Clarendon Press, Oxford, 1985. (1985) Zbl0568.20001MR0827219
  6. HERZOG M., On finite simple groups of order divisible by three primes only, J. Algebra 10 (1968), 383-388. (1968) MR0233881
  7. GORENSTEIN D., Finite Simple Groups. An Introduction to Their Classification, Plenum, New York-London, 1982. (1982) Zbl0483.20008MR0698782
  8. HUPPERT B., Endliche Gruppen, Springer-Verlag, Berlin, 1967. (1967) Zbl0217.07201MR0224703
  9. ISAACS I. M., Character Theory of Finite Groups, Pure Appl. Math. 69, Academic Press, New York-San Francisco-London, 1976. (1976) Zbl0337.20005MR0460423
  10. RIESE, UDO-SHAHABI M. A., Subgroups which are the union of four conjugacy classes, Comm. Algebra 29 (2001), 695-701. MR1841992
  11. ROBINSON, DEREK J. S., A Course in the Theory of Groups, (2nd ed.). Grad. Texts in Math. 80, Springer-Verlag, New York, 1996. (1996) MR1357169
  12. SAHRAEI H., Subgroups which are a Union of Conjugacy Classes, M.Sc. Thesis, University of Kashan, 2000. 
  13. SCHONERT M., al.: GAP, Groups, Algorithms and Programming, Lehrstuhl fur Mathematik, RWTH, Aachen, 1992. (1992) 
  14. SHAHRYARI M.-SHAHABI M. A., Subgroups which are the union of two conjugacy classes, Bull. Iranian Math. Soc. 25 (1999), 59-71. (1999) Zbl0957.20020MR1771804
  15. SHAHRYARI M.-SHAHABI M. A., Subgroups which are the union of three conjugate classes, J. Algebra 207 (1998), 326-332. (1998) Zbl0913.20014MR1643118
  16. SHI, WUJIE-WENZE YANG, A new characterization of A5 and the finite groups in which every non-identity element has prime order, J. Southwest Teachers College 9 (1984), 36-40. (Chinese) (1984) 
  17. SHI, WUJIE, The quantitative structure of groups and related topics, In: Group Theory in China. Dedicated to Hsio-Fu Tuan on the Occasion of His 82nd Birthday (Zhe-Xian Wan, Sheng-Ming Shi, eds.), Kluwer Academic Publishers. Math. Appl., Dordrecht, 1996, pp. 163-181. (1996) MR1447204
  18. SHI, WUJIE-YANG C., A class of special finite groups, Chinese Sci. Bull. 37 (1992), 252-253. (1992) 
  19. SHI, WUJIE, A class of special minimal normal subgroups, J. Southwest Teachers College 9 (1984), 9-13. (1984) 
  20. WANG JING, A special class of normal subgroups, J. Chengdu Univ. Sci. Tech. 4 (1987), 115-119. (1987) Zbl0671.20022MR1028900

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.