(Cyclic) subgroup separability of HNN and split extensions
Mathematica Slovaca (2007)
- Volume: 57, Issue: 1, page 33-40
- ISSN: 0232-0525
Access Full Article
topHow to cite
topAteş, Firat, and Çevik, A. Sinan. "(Cyclic) subgroup separability of HNN and split extensions." Mathematica Slovaca 57.1 (2007): 33-40. <http://eudml.org/doc/32191>.
@article{Ateş2007,
author = {Ateş, Firat, Çevik, A. Sinan},
journal = {Mathematica Slovaca},
keywords = {cyclic subgroup separability; residually finite groups; HNN extensions; split extensions},
language = {eng},
number = {1},
pages = {33-40},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {(Cyclic) subgroup separability of HNN and split extensions},
url = {http://eudml.org/doc/32191},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Ateş, Firat
AU - Çevik, A. Sinan
TI - (Cyclic) subgroup separability of HNN and split extensions
JO - Mathematica Slovaca
PY - 2007
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 57
IS - 1
SP - 33
EP - 40
LA - eng
KW - cyclic subgroup separability; residually finite groups; HNN extensions; split extensions
UR - http://eudml.org/doc/32191
ER -
References
top- ALLENBY R. B. J. T.-TANG C. Y., Residual finiteness of certain one-relator groups: extensions of results of Gilbert Baumslag, Math. Proc. Cambridge Philos. Soc. 97 (1985), 225-230. (1985) MR0771817
- ALLENBY R. B. J. T.-TANG C. Y., The residual finiteness of some one-relator groups with torsion, J. Algebra 71 (1981), 132-140. (1981) Zbl0469.20017MR0627429
- BAUMSLAG B.-TRETKOFF M., Residually finite HNN extensions, Comm. Algebra 6 (1978), 179-194. (1978) Zbl0375.20024MR0484178
- BAUMSLAG G.-SOLITAR D., Some two generator, one relator non-Hopfian groups, Bull. Amer. Math. Soc. 68 (1962), 199-201. (1962) Zbl0108.02702MR0142635
- BROWN K. S., Cohomology of Groups, Grad. Texts in Math. 87, Springer-Verlag, New York, 1982. (1982) Zbl0584.20036MR0672956
- BRUNNER A. M.-BURNS R. G.-SOLITAR D., The subgroup separability of free products of two free groups with cyclic amalgamation, In: Contributions to Group Theorу (K. I. Appel, J. G. Ratcliffe, P. E. Schupp, eds.) Contemp. Math. 33, Amer. Math. Soc, Providence, RI, 1984, pp. 90-115. (1984) Zbl0571.20015MR0767102
- HALL M., Coset representations in free groups, Trans. Amer. Math. Soc. 67 (1949), 421-432. (1949) Zbl0035.01301MR0032642
- HUEBSCHMANN J., On the cohomology of the holomorph of a finite cyclic group, Preprint, arXiv:math.GR/0303015 v2, 2003. Zbl1072.20062MR2078387
- JOHNSON D. L., Presentation of Groups, London Math. Soc. Stud. Texts 15, Cambridge University Press, Cambridge, 1990. (1990) MR1056695
- KIM G., Cyclic subgroup separability of HNN extensions, Bull. Korean Math. Soc. 30 (1993), 285-293. (1993) Zbl0792.20026MR1239298
- LYNDON R. C.-SCHUPP P. E., Combinatorial Group Theory, Classics in Mathematics (Reprint of thе 1977 ed.), Springer-Verlag, Berlin, 2001. (1977) Zbl0368.20023MR1812024
- MOSTOWSKI A. W., On the decidability of some problems in special classes of gгoups, Fund. Math. 59 (1966), 123-135. (1966) MR0224693
- NIBLO G. A., HNN extensions of a free group by Z which are subgroup separable, Prоc Lоndоn Math. Sоc. (3) 61 (1990), 18-32. (1990) MR1051097
- ROTMAN J. J., Theory of Groups, (Зrd еd.), Wm. C. Brоwn Publishеrs, Iоwa, 1988. (1988)
- SHIRVANI M., On residually finite HNN extensions, Arch. Math. (Basеl) 44 (1985), 110-115. (1985) Zbl0562.20011MR0780256
- SMITH G.-TABACHNIKOVA O., Topics in Group Theory, Springеr Undеrgrad. Math. Ser., Springer-Verlag, Lоndоn, 2000. Zbl0953.20001MR1765294
- WONG P. C.-TANG C. K., Cyclic subgroup separability of certain HNN extensions of finitely generated abelian groups, Rоcky Mоuntain J. Math. 29 (1999), 347-356. (1999) Zbl0932.20024MR1687671
- WONG P. C., Subgroup separability of certain HNN extensions of finitely generated abelian groups, Rоcky Mоuntain J. Math. 27 (1997), 359-365. (1997) Zbl0901.20015MR1453109
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.