Lorenzen's theorem for pseudo-effect algebras

Anatolij Dvurečenskij

Mathematica Slovaca (2004)

  • Volume: 54, Issue: 1, page 23-42
  • ISSN: 0232-0525

How to cite

top

Dvurečenskij, Anatolij. "Lorenzen's theorem for pseudo-effect algebras." Mathematica Slovaca 54.1 (2004): 23-42. <http://eudml.org/doc/32196>.

@article{Dvurečenskij2004,
author = {Dvurečenskij, Anatolij},
journal = {Mathematica Slovaca},
keywords = {pseudo-effect algebra; pseudo MV-algebra; ideal; polar; -polar; carrier; representability; unital po-group; unital -group},
language = {eng},
number = {1},
pages = {23-42},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Lorenzen's theorem for pseudo-effect algebras},
url = {http://eudml.org/doc/32196},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Dvurečenskij, Anatolij
TI - Lorenzen's theorem for pseudo-effect algebras
JO - Mathematica Slovaca
PY - 2004
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 54
IS - 1
SP - 23
EP - 42
LA - eng
KW - pseudo-effect algebra; pseudo MV-algebra; ideal; polar; -polar; carrier; representability; unital po-group; unital -group
UR - http://eudml.org/doc/32196
ER -

References

top
  1. DVUREČENSKIJ A., States on pseudo MV-algebras, Studia Logica 68 (2001), 301-327. Zbl1081.06010MR1865858
  2. DVUREČENSKIJ A., Pseudo M V -algebras are intervals in -groups, J. Austral. Math. Soc. 72 (2002), 427-445. Zbl1027.06014MR1902211
  3. DVUREČENSKIJ A., Perfect effect algebras are categorically equivalent with abelian interpolation po-groups, (Submitted). Zbl1117.06009
  4. DVUREČENSKIJ A., Ideals of pseudo-effect algebras and their applications, Tatra Mt. Math. Publ. 27 (2003), 45-65. Zbl1068.03056MR2026641
  5. DVUREČENSKIJ A.-PULMANNOVÁ S., New Trends in Quantum Structures, Kluwer Academic Publ., Dordrecht, 2000. Zbl0987.81005MR1861369
  6. DVUREČENSKIJ A.-VETTERLEIN T., Pseudoeffect algebras. I. Basic properties, Internat. J. Theoret. Phys. 40 (2001), 685-701. Zbl0994.81008MR1831592
  7. DVURECENSKIJ A.-VETTERLEIN T., Pseudoeffect algebras. II. Group representations, Internat. J. Theoret. Phys. 40 (2001), 703-726. Zbl0994.81009MR1831593
  8. GEORGESCU G.-IORGULESCU A., Pseudo- M V algebras, Mult.-Valued Log. 6 (2001), 95-135. Zbl1014.06008MR1817439
  9. GLASS A. M. W., Polars and their applications in directed interpolation groups, Trans. Amer. Math. Soc. 166 (1972), 1-25. (1972) Zbl0235.06004MR0295991
  10. LORENZEN P., Abstrakte Begrunde der multiplikativen Idealtheorie, Math. Z. 45 (1939), 533-553. (1939) MR0000604
  11. RAVINDRAN K., On a Structure Theory of Effect Algebras, PhD Thesis, Kansas State Univ., Manhattan, Kansas, 1996. (1996) MR2694228

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.