The decay number and the maximum genus of a graph

Martin Škoviera

Mathematica Slovaca (1992)

  • Volume: 42, Issue: 4, page 391-406
  • ISSN: 0139-9918

How to cite

top

Škoviera, Martin. "The decay number and the maximum genus of a graph." Mathematica Slovaca 42.4 (1992): 391-406. <http://eudml.org/doc/32198>.

@article{Škoviera1992,
author = {Škoviera, Martin},
journal = {Mathematica Slovaca},
keywords = {decay number; maximum genus; diameter 2},
language = {eng},
number = {4},
pages = {391-406},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {The decay number and the maximum genus of a graph},
url = {http://eudml.org/doc/32198},
volume = {42},
year = {1992},
}

TY - JOUR
AU - Škoviera, Martin
TI - The decay number and the maximum genus of a graph
JO - Mathematica Slovaca
PY - 1992
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 42
IS - 4
SP - 391
EP - 406
LA - eng
KW - decay number; maximum genus; diameter 2
UR - http://eudml.org/doc/32198
ER -

References

top
  1. BOUCHET A., Genre maximum d'un Δ-graphe, In: Problèmes combinatoires et thèorie des graphes. Colloques Internat. C.N.R.S. 260, C.N.R.S., Paris, 1978, pp. 57-60. (1978) MR0539940
  2. CHARTRAND G., LESNIAK L., Graphs & Digraphs, 2nd Ed., Wadsworth & Brooks-Cole, 1986. (1986) Zbl0666.05001MR0834583
  3. JAEGER F., XUONG N. H., PAYAN C., Genre maximal et connectivité d'un graphe, C.R. Acad. Sci. Paris Sér. A 285 (1977), 337-339. (1977) Zbl0369.05027
  4. KHOMENKO N. P., GLUKHOV A. D., On upper embeddable graphs, (Russian) In: Graph Theory, Izd. Inst. Mat. Akad. Nauk Ukrain. SSR, Kiev, 1977, pp. 85-89. (1977) Zbl0433.05026MR0531865
  5. KUNDU S., Bounds on the number of disjoint spanning trees, J. Combin. Theory Ser. B 17 (1974), 199-203. (1974) MR0369117
  6. NEBESKÝ L., A new characterization of the maximum genus of a graph, Czechoslovak Math. J. 31(106) (1981), 604-613. (1981) Zbl0482.05034MR0631605
  7. NEBESKÝ L., On locally quasiconnected graphs and their upper embeddability, Czechoslovak Math. J. 35(110) (1985), 162-166. (1985) Zbl0584.05031MR0779344
  8. ŠKOVIERA M., The maximum genus of graphs of diameter two, Discrete Math. 87 (1991), 175-180. (1991) Zbl0724.05021MR1091590
  9. XUONG N. H., How to determine the maximum genus of a graph, J. Combin. Theory Ser. B 26 (1979), 217-225. (1979) Zbl0403.05035MR0532589

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.