Convergence preserving permutations of and Fréchet’s space of permutations of

Jaroslav Červeňanský; Tibor Šalát

Mathematica Slovaca (1999)

  • Volume: 49, Issue: 2, page 189-199
  • ISSN: 0139-9918

How to cite

top

Červeňanský, Jaroslav, and Šalát, Tibor. "Convergence preserving permutations of $\mathbb {N}$ and Fréchet’s space of permutations of $\mathbb {N}$." Mathematica Slovaca 49.2 (1999): 189-199. <http://eudml.org/doc/32207>.

@article{Červeňanský1999,
author = {Červeňanský, Jaroslav, Šalát, Tibor},
journal = {Mathematica Slovaca},
keywords = {convergence preserving permutation; residual set; uniformly distributed sequence; porous set},
language = {eng},
number = {2},
pages = {189-199},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Convergence preserving permutations of $\mathbb \{N\}$ and Fréchet’s space of permutations of $\mathbb \{N\}$},
url = {http://eudml.org/doc/32207},
volume = {49},
year = {1999},
}

TY - JOUR
AU - Červeňanský, Jaroslav
AU - Šalát, Tibor
TI - Convergence preserving permutations of $\mathbb {N}$ and Fréchet’s space of permutations of $\mathbb {N}$
JO - Mathematica Slovaca
PY - 1999
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 49
IS - 2
SP - 189
EP - 199
LA - eng
KW - convergence preserving permutation; residual set; uniformly distributed sequence; porous set
UR - http://eudml.org/doc/32207
ER -

References

top
  1. AGNEW R. P., On rearrangements of series, Bull. Amer. Math. Soc. 46 (1940), 797-799. (1940) Zbl0024.25902MR0002635
  2. AGNEW R. P., Permutations preserving convergence of series, Proc. Amer. Math. Soc. 6 (1995), 563-564. (1995) MR0071559
  3. HOZO I.-MILLER H. I., On Rieman's theorem about conditionally convergent series, Mat. Vesnik 38 (1986), 279-283. (1986) MR0870948
  4. KNIPERS L.-NIEDERREITER H., Uniform Distribution of Sequences, John Wiley, New York-London-Sydney-Toronto, 1974. (1974) MR0419394
  5. KURATOWSKI, C, Topologie I, PWN, Warszava, 1958. (1958) 
  6. LÁSZLÓ V.-ŠALÁT T., Uniformly distributed sequences of positive integers in Baire's space, Math. Slovaca 41 (1991), 277-281. (1991) Zbl0757.11023MR1126664
  7. LEVI F. W., Rearrangements of convergent series, Duke Math. J. 13 (1946), 579-585. (1946) MR0019135
  8. PÁL L., On a problem of theory of series, Mat. Lapok 12 (1961), 38-43. (Hungarian) (1961) MR0145232
  9. PLEASANTS P. A. B., Rearrangements that preserve convergence, J. London Math. Soc. (2) 15 (1977), 134-142. (1977) Zbl0344.40001MR0432464
  10. ŠALÁT T., Baire's space of permutations of N and rearrangements of series, (To appear). Zbl1007.54032
  11. SENGUPTA H. M., On rearrangements of series, Proc. Amer. Math. Soc. 1 (1950), 71-75. (1950) MR0032786
  12. SENGUPTA H. M., Rearrangements of series, Proc. Amer. Math. Soc. 7 (1956), 347-350. (1956) Zbl0074.04404MR0078476
  13. SCHAEFER P., Sum-preserving rearrangements of infinite series, Amer. Math. Monthly 88 (1981), 33-40. (1981) Zbl0455.40007MR0619416
  14. STOUT Q. F., On Levi's duality between permutations and convergent series, J. London Math. Soc. (2) 34 (1986), 67-80. (1986) Zbl0633.40004MR0859149
  15. TKADLEC J., Construction of some non-a-porous sets of real line, Real. Anal. Exchange 9 (1983-84), 473-482. (1983) MR0766073
  16. ZAJÍČEK L., Sets of σ -porosity and sets of σ -porosity ( q ) , Časopis Pěst. Mat. 101 (1976), 350-359. (1976) Zbl0341.30026MR0457731
  17. ZAJICEK L., Porosity and σ -porosity, Real Anal. Exchange 13 (1987-88), 314-350. (1987) Zbl0666.26003MR0943561

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.