Convergence preserving permutations of and Fréchet’s space of permutations of
Jaroslav Červeňanský; Tibor Šalát
Mathematica Slovaca (1999)
- Volume: 49, Issue: 2, page 189-199
- ISSN: 0139-9918
Access Full Article
topHow to cite
topČerveňanský, Jaroslav, and Šalát, Tibor. "Convergence preserving permutations of $\mathbb {N}$ and Fréchet’s space of permutations of $\mathbb {N}$." Mathematica Slovaca 49.2 (1999): 189-199. <http://eudml.org/doc/32207>.
@article{Červeňanský1999,
author = {Červeňanský, Jaroslav, Šalát, Tibor},
journal = {Mathematica Slovaca},
keywords = {convergence preserving permutation; residual set; uniformly distributed sequence; porous set},
language = {eng},
number = {2},
pages = {189-199},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Convergence preserving permutations of $\mathbb \{N\}$ and Fréchet’s space of permutations of $\mathbb \{N\}$},
url = {http://eudml.org/doc/32207},
volume = {49},
year = {1999},
}
TY - JOUR
AU - Červeňanský, Jaroslav
AU - Šalát, Tibor
TI - Convergence preserving permutations of $\mathbb {N}$ and Fréchet’s space of permutations of $\mathbb {N}$
JO - Mathematica Slovaca
PY - 1999
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 49
IS - 2
SP - 189
EP - 199
LA - eng
KW - convergence preserving permutation; residual set; uniformly distributed sequence; porous set
UR - http://eudml.org/doc/32207
ER -
References
top- AGNEW R. P., On rearrangements of series, Bull. Amer. Math. Soc. 46 (1940), 797-799. (1940) Zbl0024.25902MR0002635
- AGNEW R. P., Permutations preserving convergence of series, Proc. Amer. Math. Soc. 6 (1995), 563-564. (1995) MR0071559
- HOZO I.-MILLER H. I., On Rieman's theorem about conditionally convergent series, Mat. Vesnik 38 (1986), 279-283. (1986) MR0870948
- KNIPERS L.-NIEDERREITER H., Uniform Distribution of Sequences, John Wiley, New York-London-Sydney-Toronto, 1974. (1974) MR0419394
- KURATOWSKI, C, Topologie I, PWN, Warszava, 1958. (1958)
- LÁSZLÓ V.-ŠALÁT T., Uniformly distributed sequences of positive integers in Baire's space, Math. Slovaca 41 (1991), 277-281. (1991) Zbl0757.11023MR1126664
- LEVI F. W., Rearrangements of convergent series, Duke Math. J. 13 (1946), 579-585. (1946) MR0019135
- PÁL L., On a problem of theory of series, Mat. Lapok 12 (1961), 38-43. (Hungarian) (1961) MR0145232
- PLEASANTS P. A. B., Rearrangements that preserve convergence, J. London Math. Soc. (2) 15 (1977), 134-142. (1977) Zbl0344.40001MR0432464
- ŠALÁT T., Baire's space of permutations of N and rearrangements of series, (To appear). Zbl1007.54032
- SENGUPTA H. M., On rearrangements of series, Proc. Amer. Math. Soc. 1 (1950), 71-75. (1950) MR0032786
- SENGUPTA H. M., Rearrangements of series, Proc. Amer. Math. Soc. 7 (1956), 347-350. (1956) Zbl0074.04404MR0078476
- SCHAEFER P., Sum-preserving rearrangements of infinite series, Amer. Math. Monthly 88 (1981), 33-40. (1981) Zbl0455.40007MR0619416
- STOUT Q. F., On Levi's duality between permutations and convergent series, J. London Math. Soc. (2) 34 (1986), 67-80. (1986) Zbl0633.40004MR0859149
- TKADLEC J., Construction of some non-a-porous sets of real line, Real. Anal. Exchange 9 (1983-84), 473-482. (1983) MR0766073
- ZAJÍČEK L., Sets of -porosity and sets of -porosity , Časopis Pěst. Mat. 101 (1976), 350-359. (1976) Zbl0341.30026MR0457731
- ZAJICEK L., Porosity and -porosity, Real Anal. Exchange 13 (1987-88), 314-350. (1987) Zbl0666.26003MR0943561
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.