BL-algebras and quantum structures

Thomas Vetterlein

Mathematica Slovaca (2004)

  • Volume: 54, Issue: 2, page 127-141
  • ISSN: 0139-9918

How to cite

top

Vetterlein, Thomas. "BL-algebras and quantum structures." Mathematica Slovaca 54.2 (2004): 127-141. <http://eudml.org/doc/32260>.

@article{Vetterlein2004,
author = {Vetterlein, Thomas},
journal = {Mathematica Slovaca},
keywords = {BL-algebra; NAM with the Riesz decomposition property; BCK-algebra; strongly cancellative BCK-algebra; BCK-algebra with condition S},
language = {eng},
number = {2},
pages = {127-141},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {BL-algebras and quantum structures},
url = {http://eudml.org/doc/32260},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Vetterlein, Thomas
TI - BL-algebras and quantum structures
JO - Mathematica Slovaca
PY - 2004
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 54
IS - 2
SP - 127
EP - 141
LA - eng
KW - BL-algebra; NAM with the Riesz decomposition property; BCK-algebra; strongly cancellative BCK-algebra; BCK-algebra with condition S
UR - http://eudml.org/doc/32260
ER -

References

top
  1. CIGNOLI R.-D'OTTAVIANO I. M. L.-MUNDICI D., Algebraic Foundations of Many-Valued Reasoning, Kluwer Acad. Publ., Dordrecht, 2000. Zbl0937.06009MR1786097
  2. DALLA CHIARA M. L.-GIUNTINI R., The logics of orthoalgebras, Studia Logica 55 (1995), 3-22. (1995) Zbl0836.03035MR1348834
  3. DVUREČENSKIJ A.-GRAZIANO M. G., On representations of commutative BCK-algebras, Demonstratio Math. 23 (1999), 227-246. (1999) Zbl0942.06009MR1710247
  4. DVUREČENSKIJ A.-PULMANNOVÁ S., New Trends in Quantum Structures, Kluwer Acad. Publ./Ister Science, Dordrecht/Bratislava, 2000. Zbl0987.81005MR1861369
  5. DVUREČENSKIJ A.-VETTERLEIN T., Pseudoeffect algebras I. Basic properties, Internat. J. Theoret. Phys. 40 (2001), 685-701. Zbl0994.81008MR1831592
  6. FOULIS D. J.-BENNETT M. K., Effect algebras and unsharp quantum logics, Found. Phys. 24 (1994), 1325-1346. (1994) Zbl1213.06004MR1304942
  7. GÖDEL K., Zum intuitionistischen Aussagenkalkul, Anzeiger Wien 69 (1932), 65-66. (1932) 
  8. GOTTWALD S., A Treatise on Many-Valued Logics, Research Studies Press, Baldock, 2001. Zbl1048.03002MR1856623
  9. GUDDER S.-PULMANNOVÁ S., Quotients of partial abelian monoids, Algebra Universalis 38 (1997), 395-421. (1997) Zbl0933.03082MR1626347
  10. HÁJEK P., Metamathematics of Fuzzy Logic, Trends in Logic - Studia Logica Library 4, Kluwer Acad. Publ., Dordrecht, 1998. (1998) Zbl0937.03030MR1900263
  11. HÁJEK P., Basic fuzzy logic and BL-algebras, Soft Comput. 2 (1998), 124-128. (1998) 
  12. HÖHLE U., Commutative, residuated l-monoids, In: Non-classical Logics and Their Applications to Fuzzy Subsets. A Handbook of the Mathematical Foundations of Fuzzy Set Theory (U. Hohle et al., eds.), Kluwer Acad. Publ., Dordrecht, 1995, pp. 53-106. (1995) Zbl0838.06012MR1345641
  13. IORGULESCU A., Iseki algebras. Connection with BL-algebras, Preprint. Zbl1075.06009
  14. ISEKI K., BCK-algebras with condition (S), Math. Japon. 24 (1979), 107-119. (1979) Zbl0438.03059MR0539396
  15. KOPKA F.-CHOVANEC F., D-posets, Math. Slovaca 44 (1994), 21-34. (1994) Zbl0789.03048MR1290269
  16. KÜHR J., Pseudo BL-algebras and DRl-monoids, Math. Bohem. 128 (2003), 199-208. MR1995573
  17. MENG J.-JUN Y. B., BCK-Algebras, Kyung Moon Sa Co., Seoul, 1994. (1994) Zbl0906.06015MR1297121
  18. MUNDICI D., MV-algebras are categorically equivalent to bounded commutative BCK-algebras, Math. Japon. 31 (1986), 889-894. (1986) Zbl0633.03066MR0870978
  19. RAVINDRAN K., On a Structure Theory of Effect Algebras, Ph.D. Thesis, Kansas State University, Manhattan, 1996. (1996) MR2694228
  20. SWAMY K. L. N., Lattice ordered semigroups, Math. Ann. 159 (1965), 105-114. (1965) Zbl0138.02104MR0183797
  21. TURUNEN E., BL-algebras of basic fuzzy logic, Mathware Soft Comput. 6 (1999), 49-61. (1999) Zbl0962.03020MR1724318

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.