The base-normed space of a unital group

Thurlow A. Cook; David J. Foulis

Mathematica Slovaca (2004)

  • Volume: 54, Issue: 1, page 69-85
  • ISSN: 0232-0525

How to cite

top

Cook, Thurlow A., and Foulis, David J.. "The base-normed space of a unital group." Mathematica Slovaca 54.1 (2004): 69-85. <http://eudml.org/doc/32288>.

@article{Cook2004,
author = {Cook, Thurlow A., Foulis, David J.},
journal = {Mathematica Slovaca},
keywords = {unital group; quantum logic; effect; base-normed space; order-unit normed space},
language = {eng},
number = {1},
pages = {69-85},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {The base-normed space of a unital group},
url = {http://eudml.org/doc/32288},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Cook, Thurlow A.
AU - Foulis, David J.
TI - The base-normed space of a unital group
JO - Mathematica Slovaca
PY - 2004
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 54
IS - 1
SP - 69
EP - 85
LA - eng
KW - unital group; quantum logic; effect; base-normed space; order-unit normed space
UR - http://eudml.org/doc/32288
ER -

References

top
  1. ALFSEN E. M., Compact Convex Sets and Boundary Integrals, Springer-Verlag, New York, 1971. (1971) Zbl0209.42601MR0445271
  2. BELTRAMETTI E. G.-BUGAJSKI S., Effect algebras and statistical physical theories, J. Math. Phys. 38 (1997), 3020-3030. (1997) Zbl0874.06009MR1449546
  3. BENNETT M. K.-FOULIS D. J., Interval and scale effect algebras, Adv. Appl. Math. 19 (1997), 200-215. (1997) Zbl0883.03048MR1459498
  4. BUSCH P.-LAHTI P. J.-MITTELSTAEDT P., The Quantum Theory of Measurement, Lecture Notes in Phys. New Ser. m Monogr. 2, Springer-Verlag, Berlin-Heidelberg-New York, 1991. (1991) MR1176754
  5. FOULIS D. J., Removing the torsion from a unital group, Rep. Math. Phys. (To appear). Zbl1054.81005MR2016215
  6. FOULIS D. J., Representation of a unital group having a finite unit interval, Demonstratio Math. 36 (To appear). Zbl1074.06007MR2018699
  7. FOULIS D. J., Archimedean unital groups with finite unit intervals, Internat. J. Math. Math. Sci. 2003 no. 44 (2003), 2787-2801. Zbl1033.06008MR2003789
  8. FOULIS D. J.-BENNETT M. K., Effect algebras and unsharp quantum logics, Found. Phys. 24 (1994), 1331-1352. (1994) Zbl1213.06004MR1304942
  9. FOULIS D. J.-GREECHIE R. J.-BENNETT M. K., The transition to unigroups, Internat. J. Theoret. Phys. 37 (1998), 45-64. (1998) Zbl0904.06013MR1637148
  10. GOODEARL K., Partially Ordered Abelian Groups With Interpolation, Math. Surveys Monographs 20, Amer. Math. Soc, Providence, RI, 1986. (1986) Zbl0589.06008MR0845783
  11. GUDDER S. P., Examples, problems, and results in effect algebras, Internat. J. Theoret. Phys. 35 (1996), 2365-2376. (1996) Zbl0868.03028MR1423412
  12. GUDDER S. P., Fuzzy probability theory, Demonstratio Math. 31 (1998), 235-254. (1998) Zbl0984.60001MR1623780
  13. GUDDER S. P.-PULMANNOVÁ S.-BUGAJSKI S.-BELTRAMETTI E. G., Convex and linear effect algebras, Rep. Math. Phys. 44 (1999), 359-379. (1999) Zbl0956.46002MR1737384
  14. LAHTI P.-PULMANNOVÁ S.-YLINEN K., Coexistent observables and effects in a convexity approach, J. Math. Phys. 39 (1998), 6364-6371. (1998) Zbl0935.81010MR1656976
  15. LUDWIG G., Foundations of Quantum Mechanics I,II, Springer, New Yоrk, 1983/85. (1983) MR0690770

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.