On the existence of a solution for nonlinear operator equations in Fréchet spaces
Mathematica Slovaca (1992)
- Volume: 42, Issue: 1, page 43-54
- ISSN: 0232-0525
Access Full Article
topHow to cite
topKečkemétyová, Mária. "On the existence of a solution for nonlinear operator equations in Fréchet spaces." Mathematica Slovaca 42.1 (1992): 43-54. <http://eudml.org/doc/32295>.
@article{Kečkemétyová1992,
author = {Kečkemétyová, Mária},
journal = {Mathematica Slovaca},
keywords = {nonlinear operator equation; fixed point; existence; Fréchet space; nonlinear differential equations; linear boundary conditions},
language = {eng},
number = {1},
pages = {43-54},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {On the existence of a solution for nonlinear operator equations in Fréchet spaces},
url = {http://eudml.org/doc/32295},
volume = {42},
year = {1992},
}
TY - JOUR
AU - Kečkemétyová, Mária
TI - On the existence of a solution for nonlinear operator equations in Fréchet spaces
JO - Mathematica Slovaca
PY - 1992
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 42
IS - 1
SP - 43
EP - 54
LA - eng
KW - nonlinear operator equation; fixed point; existence; Fréchet space; nonlinear differential equations; linear boundary conditions
UR - http://eudml.org/doc/32295
ER -
References
top- CECCHI M., MARINI M., ZEZZA P. L., Linear boundary value problems for systems of ordinary differential equations on non compact intervals, Ann. Mat. Pura Appl. (4) 123 (1980), 267-285. (1980) MR0581933
- COLLATZ L., Funktionalanalysis und numerische Mathematik, Springer-Verlag, Berlin, 1964. (1964) Zbl0139.09802MR0165651
- EDWARDS R. E., Functional Analysis, Theory and Applications, Holt, Rinshart and Winston, New York, 1965. (1965) Zbl0182.16101MR0221256
- RUDIN W., Functional Analysis, McGraw-Hill Book Company, New York, 1973. (1973) Zbl0253.46001MR0365062
- SCHAEFER, H, Über die Methode der a priori-Schranken, Math. Ann 129 (1955), 415-416. (1955) Zbl0064.35703MR0071723
- ZEZZA P. L., An equivalence theorem for nonlinear operator equations and an extension of Leray-Schauder continuation theorem, Boll. Un. Mat. Ital. A (5) 15 (1978), 545 551. (1978) MR0521099
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.