On the existence of a solution for nonlinear operator equations in Fréchet spaces

Mária Kečkemétyová

Mathematica Slovaca (1992)

  • Volume: 42, Issue: 1, page 43-54
  • ISSN: 0139-9918

How to cite

top

Kečkemétyová, Mária. "On the existence of a solution for nonlinear operator equations in Fréchet spaces." Mathematica Slovaca 42.1 (1992): 43-54. <http://eudml.org/doc/32295>.

@article{Kečkemétyová1992,
author = {Kečkemétyová, Mária},
journal = {Mathematica Slovaca},
keywords = {nonlinear operator equation; fixed point; existence; Fréchet space; nonlinear differential equations; linear boundary conditions},
language = {eng},
number = {1},
pages = {43-54},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {On the existence of a solution for nonlinear operator equations in Fréchet spaces},
url = {http://eudml.org/doc/32295},
volume = {42},
year = {1992},
}

TY - JOUR
AU - Kečkemétyová, Mária
TI - On the existence of a solution for nonlinear operator equations in Fréchet spaces
JO - Mathematica Slovaca
PY - 1992
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 42
IS - 1
SP - 43
EP - 54
LA - eng
KW - nonlinear operator equation; fixed point; existence; Fréchet space; nonlinear differential equations; linear boundary conditions
UR - http://eudml.org/doc/32295
ER -

References

top
  1. CECCHI M., MARINI M., ZEZZA P. L., Linear boundary value problems for systems of ordinary differential equations on non compact intervals, Ann. Mat. Pura Appl. (4) 123 (1980), 267-285. (1980) MR0581933
  2. COLLATZ L., Funktionalanalysis und numerische Mathematik, Springer-Verlag, Berlin, 1964. (1964) Zbl0139.09802MR0165651
  3. EDWARDS R. E., Functional Analysis, Theory and Applications, Holt, Rinshart and Winston, New York, 1965. (1965) Zbl0182.16101MR0221256
  4. RUDIN W., Functional Analysis, McGraw-Hill Book Company, New York, 1973. (1973) Zbl0253.46001MR0365062
  5. SCHAEFER, H, Über die Methode der a priori-Schranken, Math. Ann 129 (1955), 415-416. (1955) Zbl0064.35703MR0071723
  6. ZEZZA P. L., An equivalence theorem for nonlinear operator equations and an extension of Leray-Schauder continuation theorem, Boll. Un. Mat. Ital. A (5) 15 (1978), 545 551. (1978) MR0521099

NotesEmbed ?

top

You must be logged in to post comments.