On the structure of the set of solutions of nonlinear boundary value problems for ODEs on unbounded intervals

Mária Kečkemétyová

Mathematica Slovaca (2006)

  • Volume: 56, Issue: 3, page 333-347
  • ISSN: 0139-9918

How to cite

top

Kečkemétyová, Mária. "On the structure of the set of solutions of nonlinear boundary value problems for ODEs on unbounded intervals." Mathematica Slovaca 56.3 (2006): 333-347. <http://eudml.org/doc/31973>.

@article{Kečkemétyová2006,
author = {Kečkemétyová, Mária},
journal = {Mathematica Slovaca},
keywords = {topological structure; unbounded interval; boundary value problems},
language = {eng},
number = {3},
pages = {333-347},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {On the structure of the set of solutions of nonlinear boundary value problems for ODEs on unbounded intervals},
url = {http://eudml.org/doc/31973},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Kečkemétyová, Mária
TI - On the structure of the set of solutions of nonlinear boundary value problems for ODEs on unbounded intervals
JO - Mathematica Slovaca
PY - 2006
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 56
IS - 3
SP - 333
EP - 347
LA - eng
KW - topological structure; unbounded interval; boundary value problems
UR - http://eudml.org/doc/31973
ER -

References

top
  1. ANDRES J.-GABOR G.-GORNIEWICZ L., Acyclicity of solution sets to functional inclusions, Nonlinear AnaL 49 (2002), 671-688. Zbl1012.34011MR1894303
  2. ANDRES J.-GABOR G.-GORNIEWICZ L., Topological structure of solution sets to multivalued asymptotic problems, Z. Anal. Anwendungen 18 (1999), 1-20. (1999) 
  3. ANDRES J.-GABOR G.-GORNIEWICZ L., Topological structure of solution sets to multi-valued asymptotic problems, Z. Anal. Anwendungen 19 (2000), 35-60. Zbl0974.34045MR1748055
  4. ANDRES J.-GORNIEWICZ L., Topological Fixed Point Principles for Boundary Value Problems, Kluwer, Dordrecht, 2003. Zbl1029.55002MR1998968
  5. CECCHI M.-MARINI M.-ZEZZA P. L., Linear boundary value problems for systems of ordinary differential equations on non compact intervals, Ann. Mat. Pura Appl. (4) 123 (1980), 267-285. (1980) Zbl0442.34016MR0581933
  6. CZARNOWSKI K.-PRUSZKO T., On the structure of fixed point sets of compact maps in B 0 spaces with applications in unbounded domain, J. Math. Anal. Appl. 154 (1991), 151-163. (1991) MR1087965
  7. DUGUNDJI J.-GRANAS A., Fixed Point Theory, PWN, Warszawa, 1982. (1982) Zbl0483.47038MR0660439
  8. EDWARDS R. E., Functional Analysis. Theory and Applications, Holt Rinehart and Winston, New York-Chicago-San Francisco-Toronto-London, 1965. (1965) Zbl0182.16101MR0221256
  9. GABOR G., On the acyclicity of fixed point sets multivalued maps, Topol. Methods Nonlinear Anal. 14 (1999), 327-343. (1999) MR1766183
  10. GORNIEWICZ L., Topological approach to differential inclusions, In: Topological Methods in Differential Equations and Inclusions. Proceedings of the NATO Advanced Study Institute and Seminaire de Mathematiques Superieures on Topological Methods in Differential Equations and Inclusions, Montreal, Canada, July 11-22, 1994. (A. Granas et al., eds.), Kluwer Academic Publishers. NATO ASI Ser., Ser. C, Math. Phys. Sci. 472, Dordrecht, 1995, pp. 129-190. (1994) MR1368672
  11. KEČKEMÉTYOVÁ M., On the existence of a solution for nonlinear operator equations in Frechet spaces, Math. Slovaca 42 (1992), 43-54. (1992) Zbl0744.34022MR1159490
  12. KEČKEMÉTYOVÁ M., Continuous solutions of nonlinear boundary value problems for ODEs on unbounded intervals, Math. Slovaca 42 (1992), 279-297. (1992) MR1182959
  13. KUBÁČEK Z., On the structure of fixed point sets of same compact maps in the Frechet space, Math. Bohem. 118 (1993), 343-358. (1993) MR1251881
  14. ŠEDA V.-BELOHOREC S., A remark on the second order functional differential systems, Arch. Math. (Brno) 29 (1993), 169-176. (1993) MR1263119
  15. ŠEDA V.-ELIAŠ J., On the initial value problem for functional differential systems, Proc. Georgian Acad. Sci., Math. 1 (1993), 467-476. (1993) Zbl0801.34062MR1262578
  16. ŠEDA V.-KUBÁČEK Z., On the connectedness of the set of fixed points of a compact operator in the Frechet space C m ( [ b , ) , R n ) , Czechoslovak Math. J. 42 (1992), 577-588. (1992) MR1182189
  17. ŠVEC M., Integral Equation, MFF UK, Bratislava, 1983. (Slovak) (1983) 
  18. VIDOSSICH G., On the structure of the set of solutions of nonlinear equations, J. Math. Anal. Appl. 34 (1971), 602-617. (1971) MR0283645
  19. VIDOSSICH G., A fixed point theorem for function spaces, J. Math. Anal. Appl. 36 (1971), 581-587. (1971) Zbl0194.44903MR0285945
  20. YOSIDA K., Functional Analysis, Springer-Verlag, Berlin, 1965. (1965) Zbl0126.11504
  21. ZEZZA P. L., An equivalence theorem for nonlinear operator equations and an extension of Leray-Schauder continuation theorem, Boll. Unione Mat. Ital. Sez. A Mat. Soc. Cult. (5) 15 (1978), 545-551. (1978) MR0521099

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.