Edge and vertex operations on upper embeddable graphs

Hung-Lin Fu; Ming-Chun Tsai

Mathematica Slovaca (1996)

  • Volume: 46, Issue: 1, page 9-19
  • ISSN: 0232-0525

How to cite

top

Fu, Hung-Lin, and Tsai, Ming-Chun. "Edge and vertex operations on upper embeddable graphs." Mathematica Slovaca 46.1 (1996): 9-19. <http://eudml.org/doc/32297>.

@article{Fu1996,
author = {Fu, Hung-Lin, Tsai, Ming-Chun},
journal = {Mathematica Slovaca},
keywords = {connected graph; genus; upper embeddability; upper embeddable graphs},
language = {eng},
number = {1},
pages = {9-19},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Edge and vertex operations on upper embeddable graphs},
url = {http://eudml.org/doc/32297},
volume = {46},
year = {1996},
}

TY - JOUR
AU - Fu, Hung-Lin
AU - Tsai, Ming-Chun
TI - Edge and vertex operations on upper embeddable graphs
JO - Mathematica Slovaca
PY - 1996
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 46
IS - 1
SP - 9
EP - 19
LA - eng
KW - connected graph; genus; upper embeddability; upper embeddable graphs
UR - http://eudml.org/doc/32297
ER -

References

top
  1. BEHZAD M.-CHARTRAD G.-LESNIAK-FOSTER L., Graphs and Digraphs, Prindle, Weber and Schmidt, Boston, 1979. (1979) 
  2. FU H. L.-TSAI M. C., The maximum genus of diameter three graphs, Prepгint. Zbl0862.05027
  3. JUNGERMAN M., A characterization of upper embeddable graphs, Trans. Amer. Math. Soc. 241 (1978), 401-406. (1978) Zbl0379.05025MR0492309
  4. KUNDU S., Bounds on the number of disjoint spanning trees, J. Combin. Theory Ser. B 17 (1974), 199-203. (1974) MR0369117
  5. NEBESKÝ L., A new characterization of the maximum genus of a graph, Czechoslovak Math. J. 31(106) (1981), 604-613. (1981) Zbl0482.05034MR0631605
  6. NEBESKÝ L., A note on upper embeddable graphs, Czechoslovak Math. J. 33(108) (1983), 37-40. (1983) Zbl0518.05029MR0687415
  7. NEBESKÝ L., On 2-cell embeddings of graphs with minimum numbers of regions, Czechoslovak Math. J. 35(110) (1985), 625-631. (1985) Zbl0586.05015MR0809045
  8. NEDELA R.-ŠKOVIERA M., The maximum genus of a graph and doubly Eulerian trails, Boll Un. Mat. Ital. B (7) 4 (1990), 541-551. (1990) Zbl0715.05018MR1073633
  9. ŠKOVIERA.-M., The maximum genus of graphs of diameter two, Discrete Math. 87 (1991), 175-180. (1991) Zbl0724.05021MR1091590
  10. XUONG N. H., How to determine the maximum genus of a graph, J. Combin. Theory Ser. B 26 (1979), 217-225. (1979) Zbl0403.05035MR0532589

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.