Edge and vertex operations on upper embeddable graphs
Mathematica Slovaca (1996)
- Volume: 46, Issue: 1, page 9-19
- ISSN: 0232-0525
Access Full Article
topHow to cite
topFu, Hung-Lin, and Tsai, Ming-Chun. "Edge and vertex operations on upper embeddable graphs." Mathematica Slovaca 46.1 (1996): 9-19. <http://eudml.org/doc/32297>.
@article{Fu1996,
author = {Fu, Hung-Lin, Tsai, Ming-Chun},
journal = {Mathematica Slovaca},
keywords = {connected graph; genus; upper embeddability; upper embeddable graphs},
language = {eng},
number = {1},
pages = {9-19},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Edge and vertex operations on upper embeddable graphs},
url = {http://eudml.org/doc/32297},
volume = {46},
year = {1996},
}
TY - JOUR
AU - Fu, Hung-Lin
AU - Tsai, Ming-Chun
TI - Edge and vertex operations on upper embeddable graphs
JO - Mathematica Slovaca
PY - 1996
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 46
IS - 1
SP - 9
EP - 19
LA - eng
KW - connected graph; genus; upper embeddability; upper embeddable graphs
UR - http://eudml.org/doc/32297
ER -
References
top- BEHZAD M.-CHARTRAD G.-LESNIAK-FOSTER L., Graphs and Digraphs, Prindle, Weber and Schmidt, Boston, 1979. (1979)
- FU H. L.-TSAI M. C., The maximum genus of diameter three graphs, Prepгint. Zbl0862.05027
- JUNGERMAN M., A characterization of upper embeddable graphs, Trans. Amer. Math. Soc. 241 (1978), 401-406. (1978) Zbl0379.05025MR0492309
- KUNDU S., Bounds on the number of disjoint spanning trees, J. Combin. Theory Ser. B 17 (1974), 199-203. (1974) MR0369117
- NEBESKÝ L., A new characterization of the maximum genus of a graph, Czechoslovak Math. J. 31(106) (1981), 604-613. (1981) Zbl0482.05034MR0631605
- NEBESKÝ L., A note on upper embeddable graphs, Czechoslovak Math. J. 33(108) (1983), 37-40. (1983) Zbl0518.05029MR0687415
- NEBESKÝ L., On 2-cell embeddings of graphs with minimum numbers of regions, Czechoslovak Math. J. 35(110) (1985), 625-631. (1985) Zbl0586.05015MR0809045
- NEDELA R.-ŠKOVIERA M., The maximum genus of a graph and doubly Eulerian trails, Boll Un. Mat. Ital. B (7) 4 (1990), 541-551. (1990) Zbl0715.05018MR1073633
- ŠKOVIERA.-M., The maximum genus of graphs of diameter two, Discrete Math. 87 (1991), 175-180. (1991) Zbl0724.05021MR1091590
- XUONG N. H., How to determine the maximum genus of a graph, J. Combin. Theory Ser. B 26 (1979), 217-225. (1979) Zbl0403.05035MR0532589
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.