Convergence with a fixed regulator in Archimedean lattice ordered groups

Štefan Černák

Mathematica Slovaca (2006)

  • Volume: 56, Issue: 2, page 167-180
  • ISSN: 0232-0525

How to cite

top

Černák, Štefan. "Convergence with a fixed regulator in Archimedean lattice ordered groups." Mathematica Slovaca 56.2 (2006): 167-180. <http://eudml.org/doc/32302>.

@article{Černák2006,
author = {Černák, Štefan},
journal = {Mathematica Slovaca},
keywords = {Archimedean lattice-ordered group; convergence with a regulator; Cauchy completion; Dedekind completion},
language = {eng},
number = {2},
pages = {167-180},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Convergence with a fixed regulator in Archimedean lattice ordered groups},
url = {http://eudml.org/doc/32302},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Černák, Štefan
TI - Convergence with a fixed regulator in Archimedean lattice ordered groups
JO - Mathematica Slovaca
PY - 2006
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 56
IS - 2
SP - 167
EP - 180
LA - eng
KW - Archimedean lattice-ordered group; convergence with a regulator; Cauchy completion; Dedekind completion
UR - http://eudml.org/doc/32302
ER -

References

top
  1. ANDERSON M.-FEIL T., Lattice Ordered Groups, Reidel Texts in Math. Sci., D. Reidel Publishing Company, Dordrecht, 1988. (1988) Zbl0636.06008MR0937703
  2. ČERNÁK Š., On some types of maximal I-subgroups of a lattice ordered group, Math. Slovaca 28 (1978), 349-359. (1978) MR0534814
  3. ČERNÁK Š.-LIHOVÁ J., Convergence with a regulator in lattice ordered groups, Tatra Mt. Math. Publ. 39 (2005), 35-45. Zbl1150.06020MR2190246
  4. CONRAD P.-McALISTER D., The completion of a lattice ordered group, J. Austral. Math. Soc. 9 (1969), 182-208. (1969) MR0249340
  5. DARNEL M. R., Theory of Lattice Ordered Groups, Monogr. Textbooks Pure Appl. Math. 187, Marcel Dekker, New York, NY, 1995. (1995) Zbl0810.06016MR1304052
  6. FUCHS L., Partially Ordered Algebraic Systems, Pergamon Press, Oxford-London-New York-Paris, 1963. (1963) Zbl0137.02001MR0171864
  7. GLASS A. M. W., Partially Ordered Groups, Ser. Algebra 7, World Scientific, Singapore, 1999. (1999) Zbl0933.06010MR1791008
  8. JAKUBÍK J., Kernels of lattice ordered groups defined by properties of sequences, Časopis Pěst. Mat. 109 (1984), 290-298. (1984) Zbl0556.06007MR0755595
  9. LUXEMBURG M.-ZAANEN A., Riesz Spaces. Vol. I, North-Holland Math. Library, Nord Holland Publ. Comp., Amsterdam-London, 1971. (1971) Zbl0231.46014MR0511676
  10. MARTINEZ J., Polar functions. III: On irreducible maps vs. essential extensions of Archimedean l-groups with unit, Tatra Mt. Math. Publ. 27 (2003), 189-211. MR2026651
  11. VULIKH B. Z., Introduction to the Theory of Partially Ordered Spaces, Wolters-Noordhoff Sci. Publ. Ltd., Groningen, 1967. (1967) Zbl0186.44601MR0224522

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.