Periodic solutions in systems at resonances with small relay hysteresis

Michal Fečkan

Mathematica Slovaca (1999)

  • Volume: 49, Issue: 1, page 41-52
  • ISSN: 0139-9918

How to cite

top

Fečkan, Michal. "Periodic solutions in systems at resonances with small relay hysteresis." Mathematica Slovaca 49.1 (1999): 41-52. <http://eudml.org/doc/32329>.

@article{Fečkan1999,
author = {Fečkan, Michal},
journal = {Mathematica Slovaca},
keywords = {periodic solution; relay hysteresis},
language = {eng},
number = {1},
pages = {41-52},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Periodic solutions in systems at resonances with small relay hysteresis},
url = {http://eudml.org/doc/32329},
volume = {49},
year = {1999},
}

TY - JOUR
AU - Fečkan, Michal
TI - Periodic solutions in systems at resonances with small relay hysteresis
JO - Mathematica Slovaca
PY - 1999
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 49
IS - 1
SP - 41
EP - 52
LA - eng
KW - periodic solution; relay hysteresis
UR - http://eudml.org/doc/32329
ER -

References

top
  1. BRAVERMAN E. M.-MEERKOV S. M.-PYATNITSKH E. S., Conditions for applicability of the method of harmonic balance for systems with hysteresis nonlinearity (in the case of filter hypothesis), Automаt. Remote Control 37 (1976), 1640-1650. (1976) Zbl0354.93029MR0439320
  2. DEIMLING K., Multivalued Differential Equations, W. De Gruyter, Berlin, 1992. (1992) Zbl0820.34009MR1189795
  3. FEČKAN M., Bifurcation of periodic solutions in differential inclusions, Appl. Mаth. 42 (1997), 369-393. (1997) Zbl0903.34036MR1467555
  4. HARTMAN P., Ordinary Differential Equations, Wiley, New York, 1964. (1964) Zbl0125.32102MR0171038
  5. MACKI J. W.-NISTRI P.-ZECCA P., Mathematical models for hysteresis, SIAM Rev. 35 (1993), 94-123. (1993) Zbl0771.34018MR1207799
  6. MACKI J. W.-NISTRI P.-ZECCA P., Periodic oscillations in systems with hysteresis, Rocky Mountаin J. Mаth. 22 (1992), 669-681. (1992) Zbl0759.34013MR1180729
  7. MILLER R. K.-MICHEL A. N., Sinusoidal input-periodic response in nonlinear differential equations containing discontinuous elements, In: Proc. Conf. in Integrаl аnd Functionаl Differentiаl Equаtions. Lecture Notes Pure Appl. Mаth. 67, Springer-Verlаg, New York, 1980. (1980) MR0617042

NotesEmbed ?

top

You must be logged in to post comments.