Bifurcation of periodic solutions in differential inclusions
Applications of Mathematics (1997)
- Volume: 42, Issue: 5, page 369-393
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topFečkan, Michal. "Bifurcation of periodic solutions in differential inclusions." Applications of Mathematics 42.5 (1997): 369-393. <http://eudml.org/doc/32987>.
@article{Fečkan1997,
abstract = {Ordinary differential inclusions depending on small parameters are considered such that the unperturbed inclusions are ordinary differential equations possessing manifolds of periodic solutions. Sufficient conditions are determined for the persistence of some of these periodic solutions after multivalued perturbations. Applications are given to dry friction problems.},
author = {Fečkan, Michal},
journal = {Applications of Mathematics},
keywords = {multivalued mappings; differential inclusions; periodic solutions; dry friction terms; multivalued mappings; differential inclusions; periodic solutions; dry friction terms},
language = {eng},
number = {5},
pages = {369-393},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Bifurcation of periodic solutions in differential inclusions},
url = {http://eudml.org/doc/32987},
volume = {42},
year = {1997},
}
TY - JOUR
AU - Fečkan, Michal
TI - Bifurcation of periodic solutions in differential inclusions
JO - Applications of Mathematics
PY - 1997
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 42
IS - 5
SP - 369
EP - 393
AB - Ordinary differential inclusions depending on small parameters are considered such that the unperturbed inclusions are ordinary differential equations possessing manifolds of periodic solutions. Sufficient conditions are determined for the persistence of some of these periodic solutions after multivalued perturbations. Applications are given to dry friction problems.
LA - eng
KW - multivalued mappings; differential inclusions; periodic solutions; dry friction terms; multivalued mappings; differential inclusions; periodic solutions; dry friction terms
UR - http://eudml.org/doc/32987
ER -
References
top- Theorie der Schwingungen I, Akademie Verlag, Berlin, 1965. (1965) MR0216794
- An Introduction to the Theory of Nonlinear Oscillations, Nauka, Moscow, 1987. (Russian) (1987) MR0929029
- 10.1006/jdeq.1994.1110, J. Differential Equations 112 (1994), 407–447. (1994) MR1293477DOI10.1006/jdeq.1994.1110
- Multivalued Differential Equations, W. De Gruyter, Berlin, 1992. (1992) Zbl0820.34009MR1189795
- Multivalued differential equations and dry friction problems, Proc. Conf. Differential & Delay Equations, Ames, Iowa 1991, A. M. Fink, R. K. Miller, W. Kliemann (eds.), World Scientific, Singapore, 1992, pp. 99–106. (1992) Zbl0820.34009MR1170147
- 10.1007/BF00942846, Z. angew. Math. Phys. (ZAMP) 45 (1994), 53–60. (1994) MR1259526DOI10.1007/BF00942846
- Almost periodicity enforced by Coulomb friction, Adv. Differential Equations 1 (1996), 265–281. (1996) MR1364004
- Mechanische Schwingungen, 2nd ed., Springer-Verlag, Berlin, 1952. (1952) Zbl0046.17201
- 10.1006/jdeq.1996.0152, J. Differential Equations 130 (1996), 415–450. (1996) MR1410897DOI10.1006/jdeq.1996.0152
- Bifurcation from homoclinic to periodic solutions in singularly perturbed differential inclusions, Proceedings Royal Soc. Edinburgh A (to appear). (to appear) MR1465417
- Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983. (1983) MR0709768
- Ordinary Differential Equations, Wiley, New York, 1964. (1964) Zbl0125.32102MR0171038
- Nichtlineare Mechanik, Springer-Verlag, Berlin, 1958. (1958) Zbl0080.17409MR0145709
- 10.1098/rsta.1990.0102, Philos. Trans. R. Soc. London A 332 (1990), 89–105. (1990) DOI10.1098/rsta.1990.0102
- Some model problems showing stick-slip motion and chaos, ASME WAM, Proc. Symp. Friction-Induced Vibration, Chatter, Squeal and Chaos, R.A. Ibrahim and A. Soom (eds.) vol. DE-49, 1992, pp. 1–12. (1992)
- 10.1007/BF02823210, Sādhanā 20, 2–4 (1995), 627–654. (1995) MR1375904DOI10.1007/BF02823210
- Some applications of the topological degree theory to multi-valued boundary value problems, Dissertationes Math. 229 (1984), 1–48. (1984) Zbl0543.34008MR0741752
- 10.1016/0362-546X(81)90056-0, Nonlinear Anal., Th., Meth. Appl. 5 (1981), 959–973. (1981) Zbl0478.34017MR0633011DOI10.1016/0362-546X(81)90056-0
- 10.1002/mana.19540120109, Math. Nachr. 12 (1954), 119–128. (1954) MR0069996DOI10.1002/mana.19540120109
- 10.1002/mana.19550130310, Math. Nachr. 13 (1955), 231–245. (1955) Zbl0066.33503MR0078535DOI10.1002/mana.19550130310
- Singularly perturbed relay control systems, preprint (1996). (1996)
- Functional Analysis, Springer-Verlag, Berlin, 1965. (1965) Zbl0126.11504
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.