Bifurcation of periodic solutions in differential inclusions

Michal Fečkan

Applications of Mathematics (1997)

  • Volume: 42, Issue: 5, page 369-393
  • ISSN: 0862-7940

Abstract

top
Ordinary differential inclusions depending on small parameters are considered such that the unperturbed inclusions are ordinary differential equations possessing manifolds of periodic solutions. Sufficient conditions are determined for the persistence of some of these periodic solutions after multivalued perturbations. Applications are given to dry friction problems.

How to cite

top

Fečkan, Michal. "Bifurcation of periodic solutions in differential inclusions." Applications of Mathematics 42.5 (1997): 369-393. <http://eudml.org/doc/32987>.

@article{Fečkan1997,
abstract = {Ordinary differential inclusions depending on small parameters are considered such that the unperturbed inclusions are ordinary differential equations possessing manifolds of periodic solutions. Sufficient conditions are determined for the persistence of some of these periodic solutions after multivalued perturbations. Applications are given to dry friction problems.},
author = {Fečkan, Michal},
journal = {Applications of Mathematics},
keywords = {multivalued mappings; differential inclusions; periodic solutions; dry friction terms; multivalued mappings; differential inclusions; periodic solutions; dry friction terms},
language = {eng},
number = {5},
pages = {369-393},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Bifurcation of periodic solutions in differential inclusions},
url = {http://eudml.org/doc/32987},
volume = {42},
year = {1997},
}

TY - JOUR
AU - Fečkan, Michal
TI - Bifurcation of periodic solutions in differential inclusions
JO - Applications of Mathematics
PY - 1997
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 42
IS - 5
SP - 369
EP - 393
AB - Ordinary differential inclusions depending on small parameters are considered such that the unperturbed inclusions are ordinary differential equations possessing manifolds of periodic solutions. Sufficient conditions are determined for the persistence of some of these periodic solutions after multivalued perturbations. Applications are given to dry friction problems.
LA - eng
KW - multivalued mappings; differential inclusions; periodic solutions; dry friction terms; multivalued mappings; differential inclusions; periodic solutions; dry friction terms
UR - http://eudml.org/doc/32987
ER -

References

top
  1. Theorie der Schwingungen I, Akademie Verlag, Berlin, 1965. (1965) MR0216794
  2. An Introduction to the Theory of Nonlinear Oscillations, Nauka, Moscow, 1987. (Russian) (1987) MR0929029
  3. 10.1006/jdeq.1994.1110, J. Differential Equations 112 (1994), 407–447. (1994) MR1293477DOI10.1006/jdeq.1994.1110
  4. Multivalued Differential Equations, W. De Gruyter, Berlin, 1992. (1992) Zbl0820.34009MR1189795
  5. Multivalued differential equations and dry friction problems, Proc. Conf. Differential & Delay Equations, Ames, Iowa 1991, A. M. Fink, R. K. Miller, W. Kliemann (eds.), World Scientific, Singapore, 1992, pp. 99–106. (1992) Zbl0820.34009MR1170147
  6. 10.1007/BF00942846, Z. angew. Math. Phys. (ZAMP) 45 (1994), 53–60. (1994) MR1259526DOI10.1007/BF00942846
  7. Almost periodicity enforced by Coulomb friction, Adv. Differential Equations 1 (1996), 265–281. (1996) MR1364004
  8. Mechanische Schwingungen, 2nd ed., Springer-Verlag, Berlin, 1952. (1952) Zbl0046.17201
  9. 10.1006/jdeq.1996.0152, J. Differential Equations 130 (1996), 415–450. (1996) MR1410897DOI10.1006/jdeq.1996.0152
  10. Bifurcation from homoclinic to periodic solutions in singularly perturbed differential inclusions, Proceedings Royal Soc. Edinburgh A (to appear). (to appear) MR1465417
  11. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983. (1983) MR0709768
  12. Ordinary Differential Equations, Wiley, New York, 1964. (1964) Zbl0125.32102MR0171038
  13. Nichtlineare Mechanik, Springer-Verlag, Berlin, 1958. (1958) Zbl0080.17409MR0145709
  14. 10.1098/rsta.1990.0102, Philos. Trans. R. Soc. London A 332 (1990), 89–105. (1990) DOI10.1098/rsta.1990.0102
  15. Some model problems showing stick-slip motion and chaos, ASME WAM, Proc. Symp. Friction-Induced Vibration, Chatter, Squeal and Chaos, R.A. Ibrahim and A. Soom (eds.) vol. DE-49, 1992, pp. 1–12. (1992) 
  16. 10.1007/BF02823210, Sādhanā 20, 2–4 (1995), 627–654. (1995) MR1375904DOI10.1007/BF02823210
  17. Some applications of the topological degree theory to multi-valued boundary value problems, Dissertationes Math. 229 (1984), 1–48. (1984) Zbl0543.34008MR0741752
  18. 10.1016/0362-546X(81)90056-0, Nonlinear Anal., Th., Meth. Appl. 5 (1981), 959–973. (1981) Zbl0478.34017MR0633011DOI10.1016/0362-546X(81)90056-0
  19. 10.1002/mana.19540120109, Math. Nachr. 12 (1954), 119–128. (1954) MR0069996DOI10.1002/mana.19540120109
  20. 10.1002/mana.19550130310, Math. Nachr. 13 (1955), 231–245. (1955) Zbl0066.33503MR0078535DOI10.1002/mana.19550130310
  21. Singularly perturbed relay control systems, preprint (1996). (1996) 
  22. Functional Analysis, Springer-Verlag, Berlin, 1965. (1965) Zbl0126.11504

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.