Partial line graph operator and half-arc-transitive group actions

Dragan Marušič; Roman Nedela

Mathematica Slovaca (2001)

  • Volume: 51, Issue: 3, page 241-257
  • ISSN: 0232-0525

How to cite

top

Marušič, Dragan, and Nedela, Roman. "Partial line graph operator and half-arc-transitive group actions." Mathematica Slovaca 51.3 (2001): 241-257. <http://eudml.org/doc/32335>.

@article{Marušič2001,
author = {Marušič, Dragan, Nedela, Roman},
journal = {Mathematica Slovaca},
keywords = {permutation group; non-self-paired suborbit; stabilizer of vertex-transitive graph; edge-transitive graph; arc-transitive graph},
language = {eng},
number = {3},
pages = {241-257},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Partial line graph operator and half-arc-transitive group actions},
url = {http://eudml.org/doc/32335},
volume = {51},
year = {2001},
}

TY - JOUR
AU - Marušič, Dragan
AU - Nedela, Roman
TI - Partial line graph operator and half-arc-transitive group actions
JO - Mathematica Slovaca
PY - 2001
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 51
IS - 3
SP - 241
EP - 257
LA - eng
KW - permutation group; non-self-paired suborbit; stabilizer of vertex-transitive graph; edge-transitive graph; arc-transitive graph
UR - http://eudml.org/doc/32335
ER -

References

top
  1. BIGGS N.-WHITE A. T., Permutation Groups and Combinatorial Structures, Cambridge University Press, Cambridge, 1979. (1979) Zbl0415.05002MR0540889
  2. BONDY A.-MURTY U. S. R., Graph Theory with Applications, American Elsevier, New York, 1976. (1976) Zbl1226.05083MR0411988
  3. COXETER H. S. M.-MOSER W. O. J., Generators and Relations for Discrete Groups, Springer-Verlag, New York, 1972. (1972) Zbl0239.20040MR0349820
  4. DIXON J. D.-MORTIMER B., Permutation Groups, Springer-Verlag, New York, 1996. (1996) Zbl0951.20001MR1409812
  5. MARUSIC D., Half-transitive group actions on finite graphs of valency 4, J. Combin. Theory Ser. B 73 (1998), 41-76. (1998) Zbl0924.05034MR1620595
  6. MARUSIC D., Recent developments in half-transitive graphs, Discrete Math. 182 (1998), 219-231. (1998) Zbl0891.05036MR1603691
  7. MARUSlC D., Half-arc-transitive graphs of valency 4 with large vertex stabilizers, (Submitted). 
  8. MARUSIC D.-NEDELA R., Finite graphs of valency 4 and girth 4 admitting half-transitive group actions, (Submitted). Zbl1017.05048
  9. MARUSlC D.-NEDELA R., On the point stabilizers of transitive groups with non-self-paired suborbits of length 2, J. Group Theory 4 (2001), 19-43. MR1808836
  10. NEUMANN P. M., Finite permutation groups, edge-coloured graphs and matrices, In: Topics in Group Theory and Computation (Proc. Summer School, University Coll., Galway, 1973), Academic Press, London, 1977, pp. 82-118. (1973) MR0472974
  11. SIMS C. C., Graphs and finite permutation groups II, Math. Z. 103 (1968), 276-281. (1968) Zbl0259.20003MR0225865
  12. TUTTE W. T., A family of cubical graphs, Math. Proc. Cambridge Philoc. Soc. 43 (1948), 459-474. (1948) MR0021678
  13. WIELANDT H., Finite Permutation Groups, Academic Press, New York, 1964. (1964) Zbl0138.02501MR0183775
  14. WONG W. J., Determination of a class of primitive permutation groups, Math. Z. 99 (1967), 235-246. (1967) Zbl0189.31204MR0214653

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.