The remarkable generalized Petersen graph G ( 8 , 3 )

Dragan Marušič; Tomaž Pisanski

Mathematica Slovaca (2000)

  • Volume: 50, Issue: 2, page 117-121
  • ISSN: 0232-0525

How to cite

top

Marušič, Dragan, and Pisanski, Tomaž. "The remarkable generalized Petersen graph $G(8,3)$." Mathematica Slovaca 50.2 (2000): 117-121. <http://eudml.org/doc/32391>.

@article{Marušič2000,
author = {Marušič, Dragan, Pisanski, Tomaž},
journal = {Mathematica Slovaca},
keywords = {Cayley graph; Möbius-Kantor graph; Haar graph; regular map},
language = {eng},
number = {2},
pages = {117-121},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {The remarkable generalized Petersen graph $G(8,3)$},
url = {http://eudml.org/doc/32391},
volume = {50},
year = {2000},
}

TY - JOUR
AU - Marušič, Dragan
AU - Pisanski, Tomaž
TI - The remarkable generalized Petersen graph $G(8,3)$
JO - Mathematica Slovaca
PY - 2000
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 50
IS - 2
SP - 117
EP - 121
LA - eng
KW - Cayley graph; Möbius-Kantor graph; Haar graph; regular map
UR - http://eudml.org/doc/32391
ER -

References

top
  1. BETTEN A.-BRINKMANN G.-PISANSKI T., Counting symmetric v3 configurations, (Submitted). 
  2. BIGGS N., Algebraic Graph Theory, (2nd ed.), Cambridge Univ. Press, Cambridge, 1993. (1993) MR1271140
  3. The Foster Census, (I. Z. Bouwer et al, eds.), The Charles Babbage Research Centre, Winnipeg, 1988. (1988) Zbl0639.05043MR0935537
  4. COXETER H. S. M.-MOSER W. O. J., Generators and Relators for Discrete Groups, (4th ed.). Ergeb. Math. Grenzgeb. (3), Bd. 14, Springer-Verlag, Berlin-Heidelberg-New York, 1980. (1980) MR0562913
  5. DU S. F.-MARUŠIČ D.-WALLER A. O., On 2-arc-transitive covers of complete graphs, J. Combin. Theory Ser. B 74 (1998), 276-290. (1998) Zbl1026.05057MR1654121
  6. FRUCHT R.-GRAVER J. E.-WATKINS M. E., The groups of the generalized Petersen graphs, Proc. Cambridge Pnilos. Soc. 70 (1971), 211-218. (1971) Zbl0221.05069MR0289365
  7. HLADNIK M.-MARUŠIČ D.-PISANSKI T., Cyclic Haar graphs, (Submitted). Zbl0993.05084
  8. GROPP H., Configurations, In: The CRC Handbook of Combinatorial Designs (C J. Colburn, J. H. Dinitz, eds.), CRC Press Ser. on Discr. Math, and its Appl., CRC Press, Boca Raton, CA, 1996, pp. 253-255. (1996) Zbl0864.05024MR1392993
  9. LOVREČIČ-SARAŽIN M., A note on the generalized Petersen graphs that are also Cayley graphs, J. Combin. Theory Ser. B 69 (1997), 226-229. (1997) Zbl0867.05027MR1438623
  10. NEDELA R.-ŠKOVIERA M., Which generalized Petersen graphs are Cayley graphs, J. Graph Theory 19 (1995), 1-11. (1995) Zbl0812.05026MR1315420
  11. PISANSKI T.-RANDIČ M., Bridges between Geometry and Graph Theory, (To appear). MR1782654
  12. ŠKOVIERA M.-ŠIRÁŇ J., Regular maps from Cayley graphs, Part 1: Balanced Cayley maps, Discrete Math. 109 (1992), 265-276. (1992) MR1192388
  13. SUROWSKI D., The Möbius-Kantor regular map of genus two and regular Ramified coverings, Presented at SIGMAC 98, Flagstaff, AZ, July 20-24, 1998, http://odin.math.nau.edu:80/~sew/sigmac.html. (1998) 
  14. TUCKER T. W., There is only one group of genus two, J. Combin. Theory Ser. B 36 (1984), 269-275. (1984) MR0753604

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.