The remarkable generalized Petersen graph
Dragan Marušič; Tomaž Pisanski
Mathematica Slovaca (2000)
- Volume: 50, Issue: 2, page 117-121
- ISSN: 0232-0525
Access Full Article
topHow to cite
topMarušič, Dragan, and Pisanski, Tomaž. "The remarkable generalized Petersen graph $G(8,3)$." Mathematica Slovaca 50.2 (2000): 117-121. <http://eudml.org/doc/32391>.
@article{Marušič2000,
author = {Marušič, Dragan, Pisanski, Tomaž},
journal = {Mathematica Slovaca},
keywords = {Cayley graph; Möbius-Kantor graph; Haar graph; regular map},
language = {eng},
number = {2},
pages = {117-121},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {The remarkable generalized Petersen graph $G(8,3)$},
url = {http://eudml.org/doc/32391},
volume = {50},
year = {2000},
}
TY - JOUR
AU - Marušič, Dragan
AU - Pisanski, Tomaž
TI - The remarkable generalized Petersen graph $G(8,3)$
JO - Mathematica Slovaca
PY - 2000
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 50
IS - 2
SP - 117
EP - 121
LA - eng
KW - Cayley graph; Möbius-Kantor graph; Haar graph; regular map
UR - http://eudml.org/doc/32391
ER -
References
top- BETTEN A.-BRINKMANN G.-PISANSKI T., Counting symmetric v3 configurations, (Submitted).
- BIGGS N., Algebraic Graph Theory, (2nd ed.), Cambridge Univ. Press, Cambridge, 1993. (1993) MR1271140
- The Foster Census, (I. Z. Bouwer et al, eds.), The Charles Babbage Research Centre, Winnipeg, 1988. (1988) Zbl0639.05043MR0935537
- COXETER H. S. M.-MOSER W. O. J., Generators and Relators for Discrete Groups, (4th ed.). Ergeb. Math. Grenzgeb. (3), Bd. 14, Springer-Verlag, Berlin-Heidelberg-New York, 1980. (1980) MR0562913
- DU S. F.-MARUŠIČ D.-WALLER A. O., On 2-arc-transitive covers of complete graphs, J. Combin. Theory Ser. B 74 (1998), 276-290. (1998) Zbl1026.05057MR1654121
- FRUCHT R.-GRAVER J. E.-WATKINS M. E., The groups of the generalized Petersen graphs, Proc. Cambridge Pnilos. Soc. 70 (1971), 211-218. (1971) Zbl0221.05069MR0289365
- HLADNIK M.-MARUŠIČ D.-PISANSKI T., Cyclic Haar graphs, (Submitted). Zbl0993.05084
- GROPP H., Configurations, In: The CRC Handbook of Combinatorial Designs (C J. Colburn, J. H. Dinitz, eds.), CRC Press Ser. on Discr. Math, and its Appl., CRC Press, Boca Raton, CA, 1996, pp. 253-255. (1996) Zbl0864.05024MR1392993
- LOVREČIČ-SARAŽIN M., A note on the generalized Petersen graphs that are also Cayley graphs, J. Combin. Theory Ser. B 69 (1997), 226-229. (1997) Zbl0867.05027MR1438623
- NEDELA R.-ŠKOVIERA M., Which generalized Petersen graphs are Cayley graphs, J. Graph Theory 19 (1995), 1-11. (1995) Zbl0812.05026MR1315420
- PISANSKI T.-RANDIČ M., Bridges between Geometry and Graph Theory, (To appear). MR1782654
- ŠKOVIERA M.-ŠIRÁŇ J., Regular maps from Cayley graphs, Part 1: Balanced Cayley maps, Discrete Math. 109 (1992), 265-276. (1992) MR1192388
- SUROWSKI D., The Möbius-Kantor regular map of genus two and regular Ramified coverings, Presented at SIGMAC 98, Flagstaff, AZ, July 20-24, 1998, http://odin.math.nau.edu:80/~sew/sigmac.html. (1998)
- TUCKER T. W., There is only one group of genus two, J. Combin. Theory Ser. B 36 (1984), 269-275. (1984) MR0753604
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.