Multilinear operators on C ( K , X ) spaces

Ignacio Villanueva

Czechoslovak Mathematical Journal (2004)

  • Volume: 54, Issue: 1, page 31-54
  • ISSN: 0011-4642

Abstract

top
Given Banach spaces  X , Y and a compact Hausdorff space  K , we use polymeasures to give necessary conditions for a multilinear operator from C ( K , X ) into  Y to be completely continuous (resp.  unconditionally converging). We deduce necessary and sufficient conditions for  X to have the Schur property (resp.  to contain no copy of  c 0 ), and for  K to be scattered. This extends results concerning linear operators.

How to cite

top

Villanueva, Ignacio. "Multilinear operators on $C(K,X)$ spaces." Czechoslovak Mathematical Journal 54.1 (2004): 31-54. <http://eudml.org/doc/32440>.

@article{Villanueva2004,
abstract = {Given Banach spaces  $X$, $Y$ and a compact Hausdorff space  $K$, we use polymeasures to give necessary conditions for a multilinear operator from $C(K,X)$ into  $Y$ to be completely continuous (resp.  unconditionally converging). We deduce necessary and sufficient conditions for  $X$ to have the Schur property (resp.  to contain no copy of  $c_0$), and for  $K$ to be scattered. This extends results concerning linear operators.},
author = {Villanueva, Ignacio},
journal = {Czechoslovak Mathematical Journal},
keywords = {completely continuous; unconditionally converging; multilinear operators; $C(K,X)$ spaces; completely continuous operator; unconditionally converging operator; multilinear operator; spaces},
language = {eng},
number = {1},
pages = {31-54},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Multilinear operators on $C(K,X)$ spaces},
url = {http://eudml.org/doc/32440},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Villanueva, Ignacio
TI - Multilinear operators on $C(K,X)$ spaces
JO - Czechoslovak Mathematical Journal
PY - 2004
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 54
IS - 1
SP - 31
EP - 54
AB - Given Banach spaces  $X$, $Y$ and a compact Hausdorff space  $K$, we use polymeasures to give necessary conditions for a multilinear operator from $C(K,X)$ into  $Y$ to be completely continuous (resp.  unconditionally converging). We deduce necessary and sufficient conditions for  $X$ to have the Schur property (resp.  to contain no copy of  $c_0$), and for  $K$ to be scattered. This extends results concerning linear operators.
LA - eng
KW - completely continuous; unconditionally converging; multilinear operators; $C(K,X)$ spaces; completely continuous operator; unconditionally converging operator; multilinear operator; spaces
UR - http://eudml.org/doc/32440
ER -

References

top
  1. 10.1016/0022-1236(83)90081-2, J.  Funct. Anal. 52 (1983), 189–204. (1983) MR0707203DOI10.1016/0022-1236(83)90081-2
  2. Medidas vectoriales y espacios de funciones continuas, Publicaciones del Departamento de Análisis Matemático, Sección  1, No.  3, Fac. de Matemáticas, Universidad Complutense de Madrid, 1984. (1984) 
  3. 10.1017/S0305004100062678, Math. Proc. Cambridge Phil. Soc. 97 (1985), 137–146. (1985) MR0764502DOI10.1017/S0305004100062678
  4. 10.1002/1522-2616(200106)226:1<5::AID-MANA5>3.0.CO;2-I, Math. Nachr. 226 (2001), 5–15. (2001) MR1839399DOI10.1002/1522-2616(200106)226:1<5::AID-MANA5>3.0.CO;2-I
  5. Multilinear operators in spaces of continuous functions, Funct. Approx. Comment. Math. XXVI (1998), 117–126. (1998) MR1666611
  6. 10.1016/S0022-247X(03)00161-6, J. Math. Anal. Appl. 282 (2003), 341–355. (2003) MR2000348DOI10.1016/S0022-247X(03)00161-6
  7. 10.1090/S0002-9947-1974-0338821-5, Trans. Amer. Math. Soc. 192 (1974), 39–162. (1974) MR0338821DOI10.1090/S0002-9947-1974-0338821-5
  8. Regularity and extension of multilinear forms on Banach spaces, Extracta Mathematicae (2000). (2000) 
  9. 10.1007/BFb0096765, Springer, Berlin, 1997. (1997) MR1489231DOI10.1007/BFb0096765
  10. Sequences and Series in Banach Spaces, Graduate Texts in Math. Vol.  92, Springer, Berlin, 1984. (1984) MR0737004
  11. Absolutely Summing Operators. Cambridge Stud. Adv. Math. Vol.  43, Cambridge Univ. Press, Cambridge, 1995. (1995) MR1342297
  12. Vector Measures, Pergamon Press, 1967. Zbl0647.60062MR0206190
  13. Bimeasures in Banach spaces, Preprint. MR1849394
  14. On representation of linear operators on C 0 ( T , X ) , Czechoslovak Math.  J. 21(96) (1971), 13–30. (1971) MR0276804
  15. On integration in Banach spaces. VIII (polymeasures), Czechoslovak Math.  J. 37(112) (1987), 487–506. (1987) Zbl0688.28002MR0904773
  16. Representation of multilinear operators on × C 0 ( T i , X i ) , I, Atti Sem. Mat. Fis. Univ. Modena XXXIX (1991), 131–138. (1991) MR1111763
  17. Unconditionally convergent polynomials in Banach spaces and related properties, Extracta Math. 12 (1997), 305–307. (1997) MR1627517
  18. 10.1007/s006050050080, Monats. Math. 129 (2000), 341–350. (2000) DOI10.1007/s006050050080
  19. Aron-Berner extensions and Banach space properties, Preprint. 
  20. 10.1017/S0004972700009904, Bull. Austral. Math. Soc. 32 (1985), 207–215. (1985) Zbl0577.28002MR0815364DOI10.1017/S0004972700009904
  21. 10.1017/S1446788700034716, J. Austral. Math. Soc. (Series A) 56 (1994), 17–40. (1994) MR1250991DOI10.1017/S1446788700034716
  22. The Isometric Theory of Classical Banach Spaces, Springer-Verlag, 1974. (1974) Zbl0285.46024MR0493279
  23. 10.1017/S030500410006134X, Math. Proc. Camb. Phil. Soc. 95 (1984), 101–108. (1984) Zbl0537.46027MR0727084DOI10.1017/S030500410006134X
  24. Representación de operadores multilineales en espacios de funciones continuas, PhD. Thesis, Universidad Complutense de Madrid, 1999. (1999) 
  25. 10.1090/S0002-9939-99-05396-4, Proc. Amer. Math. Soc. 128 (1984), 793–801. (1984) MR1670435DOI10.1090/S0002-9939-99-05396-4

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.