Multilinear operators on spaces
Czechoslovak Mathematical Journal (2004)
- Volume: 54, Issue: 1, page 31-54
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topVillanueva, Ignacio. "Multilinear operators on $C(K,X)$ spaces." Czechoslovak Mathematical Journal 54.1 (2004): 31-54. <http://eudml.org/doc/32440>.
@article{Villanueva2004,
abstract = {Given Banach spaces $X$, $Y$ and a compact Hausdorff space $K$, we use polymeasures to give necessary conditions for a multilinear operator from $C(K,X)$ into $Y$ to be completely continuous (resp. unconditionally converging). We deduce necessary and sufficient conditions for $X$ to have the Schur property (resp. to contain no copy of $c_0$), and for $K$ to be scattered. This extends results concerning linear operators.},
author = {Villanueva, Ignacio},
journal = {Czechoslovak Mathematical Journal},
keywords = {completely continuous; unconditionally converging; multilinear operators; $C(K,X)$ spaces; completely continuous operator; unconditionally converging operator; multilinear operator; spaces},
language = {eng},
number = {1},
pages = {31-54},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Multilinear operators on $C(K,X)$ spaces},
url = {http://eudml.org/doc/32440},
volume = {54},
year = {2004},
}
TY - JOUR
AU - Villanueva, Ignacio
TI - Multilinear operators on $C(K,X)$ spaces
JO - Czechoslovak Mathematical Journal
PY - 2004
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 54
IS - 1
SP - 31
EP - 54
AB - Given Banach spaces $X$, $Y$ and a compact Hausdorff space $K$, we use polymeasures to give necessary conditions for a multilinear operator from $C(K,X)$ into $Y$ to be completely continuous (resp. unconditionally converging). We deduce necessary and sufficient conditions for $X$ to have the Schur property (resp. to contain no copy of $c_0$), and for $K$ to be scattered. This extends results concerning linear operators.
LA - eng
KW - completely continuous; unconditionally converging; multilinear operators; $C(K,X)$ spaces; completely continuous operator; unconditionally converging operator; multilinear operator; spaces
UR - http://eudml.org/doc/32440
ER -
References
top- 10.1016/0022-1236(83)90081-2, J. Funct. Anal. 52 (1983), 189–204. (1983) MR0707203DOI10.1016/0022-1236(83)90081-2
- Medidas vectoriales y espacios de funciones continuas, Publicaciones del Departamento de Análisis Matemático, Sección 1, No. 3, Fac. de Matemáticas, Universidad Complutense de Madrid, 1984. (1984)
- 10.1017/S0305004100062678, Math. Proc. Cambridge Phil. Soc. 97 (1985), 137–146. (1985) MR0764502DOI10.1017/S0305004100062678
- 10.1002/1522-2616(200106)226:1<5::AID-MANA5>3.0.CO;2-I, Math. Nachr. 226 (2001), 5–15. (2001) MR1839399DOI10.1002/1522-2616(200106)226:1<5::AID-MANA5>3.0.CO;2-I
- Multilinear operators in spaces of continuous functions, Funct. Approx. Comment. Math. XXVI (1998), 117–126. (1998) MR1666611
- 10.1016/S0022-247X(03)00161-6, J. Math. Anal. Appl. 282 (2003), 341–355. (2003) MR2000348DOI10.1016/S0022-247X(03)00161-6
- 10.1090/S0002-9947-1974-0338821-5, Trans. Amer. Math. Soc. 192 (1974), 39–162. (1974) MR0338821DOI10.1090/S0002-9947-1974-0338821-5
- Regularity and extension of multilinear forms on Banach spaces, Extracta Mathematicae (2000). (2000)
- 10.1007/BFb0096765, Springer, Berlin, 1997. (1997) MR1489231DOI10.1007/BFb0096765
- Sequences and Series in Banach Spaces, Graduate Texts in Math. Vol. 92, Springer, Berlin, 1984. (1984) MR0737004
- Absolutely Summing Operators. Cambridge Stud. Adv. Math. Vol. 43, Cambridge Univ. Press, Cambridge, 1995. (1995) MR1342297
- Vector Measures, Pergamon Press, 1967. Zbl0647.60062MR0206190
- Bimeasures in Banach spaces, Preprint. MR1849394
- On representation of linear operators on , Czechoslovak Math. J. 21(96) (1971), 13–30. (1971) MR0276804
- On integration in Banach spaces. VIII (polymeasures), Czechoslovak Math. J. 37(112) (1987), 487–506. (1987) Zbl0688.28002MR0904773
- Representation of multilinear operators on , I, Atti Sem. Mat. Fis. Univ. Modena XXXIX (1991), 131–138. (1991) MR1111763
- Unconditionally convergent polynomials in Banach spaces and related properties, Extracta Math. 12 (1997), 305–307. (1997) MR1627517
- 10.1007/s006050050080, Monats. Math. 129 (2000), 341–350. (2000) DOI10.1007/s006050050080
- Aron-Berner extensions and Banach space properties, Preprint.
- 10.1017/S0004972700009904, Bull. Austral. Math. Soc. 32 (1985), 207–215. (1985) Zbl0577.28002MR0815364DOI10.1017/S0004972700009904
- 10.1017/S1446788700034716, J. Austral. Math. Soc. (Series A) 56 (1994), 17–40. (1994) MR1250991DOI10.1017/S1446788700034716
- The Isometric Theory of Classical Banach Spaces, Springer-Verlag, 1974. (1974) Zbl0285.46024MR0493279
- 10.1017/S030500410006134X, Math. Proc. Camb. Phil. Soc. 95 (1984), 101–108. (1984) Zbl0537.46027MR0727084DOI10.1017/S030500410006134X
- Representación de operadores multilineales en espacios de funciones continuas, PhD. Thesis, Universidad Complutense de Madrid, 1999. (1999)
- 10.1090/S0002-9939-99-05396-4, Proc. Amer. Math. Soc. 128 (1984), 793–801. (1984) MR1670435DOI10.1090/S0002-9939-99-05396-4
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.