Infinitesimal bending of a subspace of a space with non-symmetric basic tensor
Svetislav M. Minčić; Ljubica S. Velimirović
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2005)
- Volume: 44, Issue: 1, page 115-130
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topMinčić, Svetislav M., and Velimirović, Ljubica S.. "Infinitesimal bending of a subspace of a space with non-symmetric basic tensor." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 44.1 (2005): 115-130. <http://eudml.org/doc/32441>.
@article{Minčić2005,
abstract = {In this work infinitesimal bending of a subspace of a generalized Riemannian space (with non-symmetric basic tensor) are studied. Based on non-symmetry of the connection, it is possible to define four kinds of covariant derivative of a tensor. We have obtained derivation formulas of the infinitesimal bending field and integrability conditions of these formulas (equations).},
author = {Minčić, Svetislav M., Velimirović, Ljubica S.},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {generalized Riemannian space; infinitesimal bending; infinitesimal deformation; subspace; generalized Riemann space; infinitesimal bending; integrability conditions},
language = {eng},
number = {1},
pages = {115-130},
publisher = {Palacký University Olomouc},
title = {Infinitesimal bending of a subspace of a space with non-symmetric basic tensor},
url = {http://eudml.org/doc/32441},
volume = {44},
year = {2005},
}
TY - JOUR
AU - Minčić, Svetislav M.
AU - Velimirović, Ljubica S.
TI - Infinitesimal bending of a subspace of a space with non-symmetric basic tensor
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2005
PB - Palacký University Olomouc
VL - 44
IS - 1
SP - 115
EP - 130
AB - In this work infinitesimal bending of a subspace of a generalized Riemannian space (with non-symmetric basic tensor) are studied. Based on non-symmetry of the connection, it is possible to define four kinds of covariant derivative of a tensor. We have obtained derivation formulas of the infinitesimal bending field and integrability conditions of these formulas (equations).
LA - eng
KW - generalized Riemannian space; infinitesimal bending; infinitesimal deformation; subspace; generalized Riemann space; infinitesimal bending; integrability conditions
UR - http://eudml.org/doc/32441
ER -
References
top- Efimov N. V., Kachestvennye voprosy teorii deformacii poverhnostei, UMN 3.2 (1948), 47–158. (1948)
- Eisenhart L. P., Generalized Riemann spaces, Proc. Nat. Acad. Sci. USA 37 (1951), 311–315. (1951) MR0043530
- Kon-Fossen S. E.: Nekotorye voprosy differ. geometrii v celom., Fizmatgiz, Moskva, , 1959. (1959)
- Hineva S. T., On infinitesimal deformations of submanifolds of a Riemannian manifold, Differ. Geom., Banach center publications 12, PWN, Warshaw, 1984, 75–81. (1984) Zbl0556.53035MR0961074
- Ivanova-Karatopraklieva I., Sabitov I. Kh., Surface deformation, J. Math. Sci., New York, 70, 2 (1994), 1685–1716. (1994)
- Ivanova-Karatopraklieva I., Sabitov I. Kh., Bending of surfaces II, J. Math. Sci., New York, 74, 3 (1995), 997–1043. (1995) Zbl0861.53002MR1330961
- Lizunova L. Yu., O beskonechno malyh izgibaniyah giperpoverhnostei v rimanovom prostranstve, Izvestiya VUZ, Matematika 94, 3 (1970), 36–42. (1970) MR0276901
- Markov P. E., Beskonechno malye izgibanya nekotoryh mnogomernyh poverhnostei, Matemat. zametki T. 27, 3 (1980), 469–479. (1980) MR0570757
- Mikeš J., Holomorphically projective mappings and their generalizations, J. Math. Sci., New York, 89, 3 (1998), 1334–1353. (1998) Zbl0983.53013MR1619720
- Mikeš J., Laitochová J., Pokorná O., On some relations between curvature and metric tensors in Riemannian spaces, Suppl. ai Rediconti del Circolo Mathematico di Palermo 2, 63 (2000), 173–176. Zbl0978.53030
- Minčić S. M., Ricci type identities in a subspace of a space of non-symmetric affine connexion, Publ. Inst. Math., NS, t.18(32) (1975), 137–148. (1975) MR0383272
- Minčić S. M., Novye tozhdestva tipa Ricci v podprostranstve prostranstva nesimmetrichnoi affinoi svyaznosty, Izvestiya VUZ, Matematika 203, 4 (1979), 17–27. (1979)
- Minčić S. M., Derivational formulas of a subspace of a generalized Riemannian space, Publ. Inst. Math., NS, t.34(48) (1983), 125–135. (1983) MR0770025
- Minčić S. M., Integrability conditions of derivational formulas of a subspace of generalized Riemannian space, Publ. Inst. Math., NS, t.31(45) (1980), 141–157. (1980)
- Minčić S. M., Velimirović L. S., O podprostranstvah obob. rimanova prostranstva, Siberian Mathematical Journal, Dep. v VINITI No.3472-V 98 (1998). (1998)
- Minčić S. M., Velimirović L. S., Riemannian Subspaces of Generalized Riemannian Spaces, Universitatea Din Bacau Studii Si Cercetari Stiintifice, Seria: Matematica, 9 (1999), 111–128. (1999) Zbl1056.53500MR1848987
- Minčić S. M., Velimirović L. S., Stanković M. S., Infinitesimal Deformations of a Non-Symmetric Affine Connection Space, Filomat (2001), 175–182.
- Velimirović L. S., Minčić S. M., Stanković M. S., Infinitesimal deformations and Lie Derivative of a Non-symmetric Affine Connection Space, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 42 (2003), 111–121. Zbl1061.53010MR2056026
- Mishra R. S., Subspaces of generalized Riemannian space, Bull. Acad. Roy. Belgique, Cl. sci., (1954), 1058–1071. (1954) MR0067551
- Prvanovich M., Équations de Gauss d’un sous-espace plongé dans l’espace Riemannien généralisé, Bull. Acad. Roy. Belgique, Cl. sci., (1955), 615–621. (1955)
- Velimirović L. S., Minčić S. M., On infinitesimal bendings of subspaces of generalized Riemannian spaces, Tensor (2004), 212–224.
- Yano K., Sur la theorie des deformations infinitesimales, Journal of Fac. of Sci. Univ. of Tokyo 6 (1949), 1–75. (1949) Zbl0040.37803MR0035084
- Yano K., Infinitesimal variations of submanifolds, Kodai Math. J., 1 (1978), 30–44. (1978) Zbl0411.53037MR0487913
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.