Infinitesimal bending of a subspace of a space with non-symmetric basic tensor

Svetislav M. Minčić; Ljubica S. Velimirović

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2005)

  • Volume: 44, Issue: 1, page 115-130
  • ISSN: 0231-9721

Abstract

top
In this work infinitesimal bending of a subspace of a generalized Riemannian space (with non-symmetric basic tensor) are studied. Based on non-symmetry of the connection, it is possible to define four kinds of covariant derivative of a tensor. We have obtained derivation formulas of the infinitesimal bending field and integrability conditions of these formulas (equations).

How to cite

top

Minčić, Svetislav M., and Velimirović, Ljubica S.. "Infinitesimal bending of a subspace of a space with non-symmetric basic tensor." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 44.1 (2005): 115-130. <http://eudml.org/doc/32441>.

@article{Minčić2005,
abstract = {In this work infinitesimal bending of a subspace of a generalized Riemannian space (with non-symmetric basic tensor) are studied. Based on non-symmetry of the connection, it is possible to define four kinds of covariant derivative of a tensor. We have obtained derivation formulas of the infinitesimal bending field and integrability conditions of these formulas (equations).},
author = {Minčić, Svetislav M., Velimirović, Ljubica S.},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {generalized Riemannian space; infinitesimal bending; infinitesimal deformation; subspace; generalized Riemann space; infinitesimal bending; integrability conditions},
language = {eng},
number = {1},
pages = {115-130},
publisher = {Palacký University Olomouc},
title = {Infinitesimal bending of a subspace of a space with non-symmetric basic tensor},
url = {http://eudml.org/doc/32441},
volume = {44},
year = {2005},
}

TY - JOUR
AU - Minčić, Svetislav M.
AU - Velimirović, Ljubica S.
TI - Infinitesimal bending of a subspace of a space with non-symmetric basic tensor
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2005
PB - Palacký University Olomouc
VL - 44
IS - 1
SP - 115
EP - 130
AB - In this work infinitesimal bending of a subspace of a generalized Riemannian space (with non-symmetric basic tensor) are studied. Based on non-symmetry of the connection, it is possible to define four kinds of covariant derivative of a tensor. We have obtained derivation formulas of the infinitesimal bending field and integrability conditions of these formulas (equations).
LA - eng
KW - generalized Riemannian space; infinitesimal bending; infinitesimal deformation; subspace; generalized Riemann space; infinitesimal bending; integrability conditions
UR - http://eudml.org/doc/32441
ER -

References

top
  1. Efimov N. V., Kachestvennye voprosy teorii deformacii poverhnostei, UMN 3.2 (1948), 47–158. (1948) 
  2. Eisenhart L. P., Generalized Riemann spaces, Proc. Nat. Acad. Sci. USA 37 (1951), 311–315. (1951) MR0043530
  3. Kon-Fossen S. E.: Nekotorye voprosy differ. geometrii v celom., Fizmatgiz, Moskva, , 1959. (1959) 
  4. Hineva S. T., On infinitesimal deformations of submanifolds of a Riemannian manifold, Differ. Geom., Banach center publications 12, PWN, Warshaw, 1984, 75–81. (1984) Zbl0556.53035MR0961074
  5. Ivanova-Karatopraklieva I., Sabitov I. Kh., Surface deformation, J. Math. Sci., New York, 70, 2 (1994), 1685–1716. (1994) 
  6. Ivanova-Karatopraklieva I., Sabitov I. Kh., Bending of surfaces II, J. Math. Sci., New York, 74, 3 (1995), 997–1043. (1995) Zbl0861.53002MR1330961
  7. Lizunova L. Yu., O beskonechno malyh izgibaniyah giperpoverhnostei v rimanovom prostranstve, Izvestiya VUZ, Matematika 94, 3 (1970), 36–42. (1970) MR0276901
  8. Markov P. E., Beskonechno malye izgibanya nekotoryh mnogomernyh poverhnostei, Matemat. zametki T. 27, 3 (1980), 469–479. (1980) MR0570757
  9. Mikeš J., Holomorphically projective mappings and their generalizations, J. Math. Sci., New York, 89, 3 (1998), 1334–1353. (1998) Zbl0983.53013MR1619720
  10. Mikeš J., Laitochová J., Pokorná O., On some relations between curvature and metric tensors in Riemannian spaces, Suppl. ai Rediconti del Circolo Mathematico di Palermo 2, 63 (2000), 173–176. Zbl0978.53030
  11. Minčić S. M., Ricci type identities in a subspace of a space of non-symmetric affine connexion, Publ. Inst. Math., NS, t.18(32) (1975), 137–148. (1975) MR0383272
  12. Minčić S. M., Novye tozhdestva tipa Ricci v podprostranstve prostranstva nesimmetrichnoi affinoi svyaznosty, Izvestiya VUZ, Matematika 203, 4 (1979), 17–27. (1979) 
  13. Minčić S. M., Derivational formulas of a subspace of a generalized Riemannian space, Publ. Inst. Math., NS, t.34(48) (1983), 125–135. (1983) MR0770025
  14. Minčić S. M., Integrability conditions of derivational formulas of a subspace of generalized Riemannian space, Publ. Inst. Math., NS, t.31(45) (1980), 141–157. (1980) 
  15. Minčić S. M., Velimirović L. S., O podprostranstvah obob. rimanova prostranstva, Siberian Mathematical Journal, Dep. v VINITI No.3472-V 98 (1998). (1998) 
  16. Minčić S. M., Velimirović L. S., Riemannian Subspaces of Generalized Riemannian Spaces, Universitatea Din Bacau Studii Si Cercetari Stiintifice, Seria: Matematica, 9 (1999), 111–128. (1999) Zbl1056.53500MR1848987
  17. Minčić S. M., Velimirović L. S., Stanković M. S., Infinitesimal Deformations of a Non-Symmetric Affine Connection Space, Filomat (2001), 175–182. 
  18. Velimirović L. S., Minčić S. M., Stanković M. S., Infinitesimal deformations and Lie Derivative of a Non-symmetric Affine Connection Space, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 42 (2003), 111–121. Zbl1061.53010MR2056026
  19. Mishra R. S., Subspaces of generalized Riemannian space, Bull. Acad. Roy. Belgique, Cl. sci., (1954), 1058–1071. (1954) MR0067551
  20. Prvanovich M., Équations de Gauss d’un sous-espace plongé dans l’espace Riemannien généralisé, Bull. Acad. Roy. Belgique, Cl. sci., (1955), 615–621. (1955) 
  21. Velimirović L. S., Minčić S. M., On infinitesimal bendings of subspaces of generalized Riemannian spaces, Tensor (2004), 212–224. 
  22. Yano K., Sur la theorie des deformations infinitesimales, Journal of Fac. of Sci. Univ. of Tokyo 6 (1949), 1–75. (1949) Zbl0040.37803MR0035084
  23. Yano K., Infinitesimal variations of submanifolds, Kodai Math. J., 1 (1978), 30–44. (1978) Zbl0411.53037MR0487913

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.