The converse of Kelly’s lemma and control-classes in graph reconstruction

Paolo Dulio; Virgilio Pannone

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2005)

  • Volume: 44, Issue: 1, page 25-38
  • ISSN: 0231-9721

Abstract

top
We prove a converse of the well-known Kelly’s Lemma. This motivates the introduction of the general notions of 𝒦 -table, 𝒦 -congruence and control-class.

How to cite

top

Dulio, Paolo, and Pannone, Virgilio. "The converse of Kelly’s lemma and control-classes in graph reconstruction." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 44.1 (2005): 25-38. <http://eudml.org/doc/32448>.

@article{Dulio2005,
abstract = {We prove a converse of the well-known Kelly’s Lemma. This motivates the introduction of the general notions of $\mathcal \{K\}$-table, $\mathcal \{K\}$-congruence and control-class.},
author = {Dulio, Paolo, Pannone, Virgilio},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Graph; Kelly’s Lemma; Reconstruction},
language = {eng},
number = {1},
pages = {25-38},
publisher = {Palacký University Olomouc},
title = {The converse of Kelly’s lemma and control-classes in graph reconstruction},
url = {http://eudml.org/doc/32448},
volume = {44},
year = {2005},
}

TY - JOUR
AU - Dulio, Paolo
AU - Pannone, Virgilio
TI - The converse of Kelly’s lemma and control-classes in graph reconstruction
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2005
PB - Palacký University Olomouc
VL - 44
IS - 1
SP - 25
EP - 38
AB - We prove a converse of the well-known Kelly’s Lemma. This motivates the introduction of the general notions of $\mathcal {K}$-table, $\mathcal {K}$-congruence and control-class.
LA - eng
KW - Graph; Kelly’s Lemma; Reconstruction
UR - http://eudml.org/doc/32448
ER -

References

top
  1. Bollobás B., Almost every graph has reconstruction number three, J. Graph Theory 14 (1990), 1–4 (1990) Zbl0702.05061MR1037416
  2. Bondy J. A.: A Graph Reconstructor’s Manual., Lecture Notes LMS, vol. 166, Cambridge Univ. Press, , 1991. (1991) MR1161466
  3. Dulio P., Pannone V., Trees with the same path-table, submitted. Zbl1118.05014
  4. Geller D., Manvel B., Reconstruction of cacti, Canad. J. Math. 21 (1969), 1354–1360. (1969) Zbl0187.21401MR0252255
  5. Greenwell D. L., Hemminger R. L., Reconstructing the n -connected components of a graph, Aequationes Math. 9 (1973), 19–22. (1973) Zbl0255.05125MR0384614
  6. Harary F., Plantholt M., The Graph Reconstruction Number, J. Graph Theory 9 (1985), 451–454. (1985) Zbl0664.05043MR0890233
  7. Kelly P. J., A congruence Theorem for Trees, Pacific J. Math. 7 (1957), 961–968. (1957) Zbl0078.37103MR0087949
  8. Lauri J., The reconstruction of maximal planar graphs. II. Reconstruction, J. Combin. Theory, Ser. B 30, 2 (1981), 196–214. (1981) Zbl0413.05036MR0615314
  9. Lauri J., Graph reconstruction-some techniques and new problems, Ars Combinatoria, ser. B 24 (1987), 35–61. (1987) Zbl0659.05068MR0941788
  10. Monson S. D., The reconstruction of cacti revisited, Congr. Numer. 69 (1989), 157–166. (1989) Zbl0678.05040MR0995883
  11. Nýdl V., Finite undirected graphs which are not reconstructible from their large cardinality subgraphs, Discrete Math. 108 (1992), 373–377. (1992) Zbl0759.05067MR1189858
  12. Tutte W. T., All the king’s horses. A guide to reconstruction, In: Graph Theory and Related Topics, Acad. Press, New York, 1979 (pp. 15–33). (1979) Zbl0472.05046MR0538033

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.