Remarks on existence of positive solutions of some integral equations

Jan Ligęza

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2005)

  • Volume: 44, Issue: 1, page 71-82
  • ISSN: 0231-9721

Abstract

top
We study the existence of positive solutions of the integral equation x ( t ) = μ 0 1 k ( t , s ) f ( s , x ( s ) , x ' ( s ) , ... , x ( n - 1 ) ( s ) ) d s , n 2 in both C n - 1 [ 0 , 1 ] and W n - 1 , p [ 0 , 1 ] spaces, where p 1 and μ > 0 . Throughout this paper k is nonnegative but the nonlinearity f may take negative values. The Krasnosielski fixed point theorem on cone is used.

How to cite

top

Ligęza, Jan. "Remarks on existence of positive solutions of some integral equations." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 44.1 (2005): 71-82. <http://eudml.org/doc/32452>.

@article{Ligęza2005,
abstract = {We study the existence of positive solutions of the integral equation \[ x(t) = \mu \int \_0^1 k(t, s) f(s, x(s), x^\{\prime \}(s), \ldots , x^\{(n-1)\} (s))\, ds, \quad n \ge 2 \] in both $ C^\{n-1\} [0, 1] $ and $ W^\{n-1, p\} [0, 1] $ spaces, where $ p \ge 1 $ and $ \mu > 0 $. Throughout this paper $k$ is nonnegative but the nonlinearity $f$ may take negative values. The Krasnosielski fixed point theorem on cone is used.},
author = {Ligęza, Jan},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Positive solutions; Fredholm integral equations; cone; boundary value problems; fixed point theorem; positive solution; nonlinear integral equation},
language = {eng},
number = {1},
pages = {71-82},
publisher = {Palacký University Olomouc},
title = {Remarks on existence of positive solutions of some integral equations},
url = {http://eudml.org/doc/32452},
volume = {44},
year = {2005},
}

TY - JOUR
AU - Ligęza, Jan
TI - Remarks on existence of positive solutions of some integral equations
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2005
PB - Palacký University Olomouc
VL - 44
IS - 1
SP - 71
EP - 82
AB - We study the existence of positive solutions of the integral equation \[ x(t) = \mu \int _0^1 k(t, s) f(s, x(s), x^{\prime }(s), \ldots , x^{(n-1)} (s))\, ds, \quad n \ge 2 \] in both $ C^{n-1} [0, 1] $ and $ W^{n-1, p} [0, 1] $ spaces, where $ p \ge 1 $ and $ \mu > 0 $. Throughout this paper $k$ is nonnegative but the nonlinearity $f$ may take negative values. The Krasnosielski fixed point theorem on cone is used.
LA - eng
KW - Positive solutions; Fredholm integral equations; cone; boundary value problems; fixed point theorem; positive solution; nonlinear integral equation
UR - http://eudml.org/doc/32452
ER -

References

top
  1. Agarwal R. P., Grace S. R., O’Regan D., Existence of positive solutions of semipositone Fredholm integral equation, Funkciałaj Equaciaj 45 (2002), 223–235. MR1948600
  2. Agarwal R. P., O’Regan D.: Infinite Interval Problems For Differential, Difference, Integral Equations., Kluwer Acad. Publishers, Dordrecht, Boston, London, , 2001. MR1845855
  3. Agarwal R. P., O’Regan D., Wang J. Y.: Positive Solutions of Differential, Difference, Integral Equations., Kluwer Academic Publishers, Dordrecht, Boston, London, , 1999. (1999) MR1680024
  4. Deimling K.: Nonlinear Functional Analysis., Springer, New York, , 1985. (1985) MR0787404
  5. Guo D., Lakshmikannthan V.: Nonlinear Problems in Abstract Cones., Academic Press, San Diego, , 1988. (1988) MR0959889
  6. Galewski A., On a certain generalization of the Krasnosielskii theorem, J. Appl. Anal. 1 (2003), 139–147. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.