Remarks on existence of positive solutions of some integral equations
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2005)
- Volume: 44, Issue: 1, page 71-82
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topLigęza, Jan. "Remarks on existence of positive solutions of some integral equations." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 44.1 (2005): 71-82. <http://eudml.org/doc/32452>.
@article{Ligęza2005,
abstract = {We study the existence of positive solutions of the integral equation \[ x(t) = \mu \int \_0^1 k(t, s) f(s, x(s), x^\{\prime \}(s), \ldots , x^\{(n-1)\} (s))\, ds, \quad n \ge 2 \]
in both $ C^\{n-1\} [0, 1] $ and $ W^\{n-1, p\} [0, 1] $ spaces, where $ p \ge 1 $ and $ \mu > 0 $. Throughout this paper $k$ is nonnegative but the nonlinearity $f$ may take negative values. The Krasnosielski fixed point theorem on cone is used.},
author = {Ligęza, Jan},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Positive solutions; Fredholm integral equations; cone; boundary value problems; fixed point theorem; positive solution; nonlinear integral equation},
language = {eng},
number = {1},
pages = {71-82},
publisher = {Palacký University Olomouc},
title = {Remarks on existence of positive solutions of some integral equations},
url = {http://eudml.org/doc/32452},
volume = {44},
year = {2005},
}
TY - JOUR
AU - Ligęza, Jan
TI - Remarks on existence of positive solutions of some integral equations
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2005
PB - Palacký University Olomouc
VL - 44
IS - 1
SP - 71
EP - 82
AB - We study the existence of positive solutions of the integral equation \[ x(t) = \mu \int _0^1 k(t, s) f(s, x(s), x^{\prime }(s), \ldots , x^{(n-1)} (s))\, ds, \quad n \ge 2 \]
in both $ C^{n-1} [0, 1] $ and $ W^{n-1, p} [0, 1] $ spaces, where $ p \ge 1 $ and $ \mu > 0 $. Throughout this paper $k$ is nonnegative but the nonlinearity $f$ may take negative values. The Krasnosielski fixed point theorem on cone is used.
LA - eng
KW - Positive solutions; Fredholm integral equations; cone; boundary value problems; fixed point theorem; positive solution; nonlinear integral equation
UR - http://eudml.org/doc/32452
ER -
References
top- Agarwal R. P., Grace S. R., O’Regan D., Existence of positive solutions of semipositone Fredholm integral equation, Funkciałaj Equaciaj 45 (2002), 223–235. MR1948600
- Agarwal R. P., O’Regan D.: Infinite Interval Problems For Differential, Difference, Integral Equations., Kluwer Acad. Publishers, Dordrecht, Boston, London, , 2001. MR1845855
- Agarwal R. P., O’Regan D., Wang J. Y.: Positive Solutions of Differential, Difference, Integral Equations., Kluwer Academic Publishers, Dordrecht, Boston, London, , 1999. (1999) MR1680024
- Deimling K.: Nonlinear Functional Analysis., Springer, New York, , 1985. (1985) MR0787404
- Guo D., Lakshmikannthan V.: Nonlinear Problems in Abstract Cones., Academic Press, San Diego, , 1988. (1988) MR0959889
- Galewski A., On a certain generalization of the Krasnosielskii theorem, J. Appl. Anal. 1 (2003), 139–147.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.