Discriminator order algebras

Ivan Chajda

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2008)

  • Volume: 47, Issue: 1, page 23-25
  • ISSN: 0231-9721

Abstract

top
We prove that an order algebra assigned to a bounded poset with involution is a discriminator algebra.

How to cite

top

Chajda, Ivan. "Discriminator order algebras." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 47.1 (2008): 23-25. <http://eudml.org/doc/32466>.

@article{Chajda2008,
abstract = {We prove that an order algebra assigned to a bounded poset with involution is a discriminator algebra.},
author = {Chajda, Ivan},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {order algebra; ordered set; involution; ternary discriminator; order algebra; discriminator algebra; bounded poset with involution},
language = {eng},
number = {1},
pages = {23-25},
publisher = {Palacký University Olomouc},
title = {Discriminator order algebras},
url = {http://eudml.org/doc/32466},
volume = {47},
year = {2008},
}

TY - JOUR
AU - Chajda, Ivan
TI - Discriminator order algebras
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2008
PB - Palacký University Olomouc
VL - 47
IS - 1
SP - 23
EP - 25
AB - We prove that an order algebra assigned to a bounded poset with involution is a discriminator algebra.
LA - eng
KW - order algebra; ordered set; involution; ternary discriminator; order algebra; discriminator algebra; bounded poset with involution
UR - http://eudml.org/doc/32466
ER -

References

top
  1. Berman J., Blok W. J., Algebras Defined from Ordered Sets and the Varieties they Generate, Order 23 (2006), 65–88. Zbl1096.08002MR2258461

NotesEmbed ?

top

You must be logged in to post comments.