Topologies on groups determined by right cancellable ultrafilters
Commentationes Mathematicae Universitatis Carolinae (2009)
- Volume: 50, Issue: 1, page 135-139
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topProtasov, Igor V.. "Topologies on groups determined by right cancellable ultrafilters." Commentationes Mathematicae Universitatis Carolinae 50.1 (2009): 135-139. <http://eudml.org/doc/32487>.
@article{Protasov2009,
abstract = {For every discrete group $G$, the Stone-Čech compactification $\beta G$ of $G$ has a natural structure of a compact right topological semigroup. An ultrafilter $p\in G^*$, where $G^*=\beta G\setminus G$, is called right cancellable if, given any $q,r\in G^*$, $qp=rp$ implies $q=r$. For every right cancellable ultrafilter $p\in G^*$, we denote by $G(p)$ the group $G$ endowed with the strongest left invariant topology in which $p$ converges to the identity of $G$. For any countable group $G$ and any right cancellable ultrafilters $p,q\in G^*$, we show that $G(p)$ is homeomorphic to $G(q)$ if and only if $p$ and $q$ are of the same type.},
author = {Protasov, Igor V.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Stone-Čech compactification; right cancellable ultrafilters; left invariant topologies; Stone-Čech compactification; right cancellable ultrafilter; left invariant topology},
language = {eng},
number = {1},
pages = {135-139},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Topologies on groups determined by right cancellable ultrafilters},
url = {http://eudml.org/doc/32487},
volume = {50},
year = {2009},
}
TY - JOUR
AU - Protasov, Igor V.
TI - Topologies on groups determined by right cancellable ultrafilters
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2009
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 50
IS - 1
SP - 135
EP - 139
AB - For every discrete group $G$, the Stone-Čech compactification $\beta G$ of $G$ has a natural structure of a compact right topological semigroup. An ultrafilter $p\in G^*$, where $G^*=\beta G\setminus G$, is called right cancellable if, given any $q,r\in G^*$, $qp=rp$ implies $q=r$. For every right cancellable ultrafilter $p\in G^*$, we denote by $G(p)$ the group $G$ endowed with the strongest left invariant topology in which $p$ converges to the identity of $G$. For any countable group $G$ and any right cancellable ultrafilters $p,q\in G^*$, we show that $G(p)$ is homeomorphic to $G(q)$ if and only if $p$ and $q$ are of the same type.
LA - eng
KW - Stone-Čech compactification; right cancellable ultrafilters; left invariant topologies; Stone-Čech compactification; right cancellable ultrafilter; left invariant topology
UR - http://eudml.org/doc/32487
ER -
References
top- Hindman N., Strauss D., Algebra in the Stone-Čech Compactification: Theory and Applications, Walter de Gruyter, Berlin, 1998. Zbl0918.22001MR1642231
- Hindman N., Protasov I., Strauss D., Topologies on determined by idempotents in , Topology Proc. 23 (1998), 155--190. (1998) Zbl0970.54036MR1803247
- Protasov I.V., 10.1007/BF02674129, Siberian Math. J. 39 (1998), 1184--1194. (1998) Zbl0935.22002MR1672661DOI10.1007/BF02674129
- Protasov I.V., Extremal topologies on groups, Mat. Stud. 15 (2001), 9--22. (2001) Zbl0989.22003MR1871923
- Protasov I.V., Remarks on extremally disconnected semitopological groups, Comment. Math. Univ. Carolin. 43 (2002), 343--347. (2002) Zbl1090.54033MR1922132
- Vaughan J.E., Two spaces homeomorphic to , Comment. Math. Univ. Carolin. 42 (2001), 209--218. (2001) Zbl1053.54033MR1825385
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.