Two spaces homeomorphic to
Commentationes Mathematicae Universitatis Carolinae (2001)
- Volume: 42, Issue: 1, page 209-218
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topVaughan, Jerry E.. "Two spaces homeomorphic to $Seq(p)$." Commentationes Mathematicae Universitatis Carolinae 42.1 (2001): 209-218. <http://eudml.org/doc/248763>.
@article{Vaughan2001,
abstract = {We consider the spaces called $Seq(u_t)$, constructed on the set $Seq$ of all finite sequences of natural numbers using ultrafilters $u_t$ to define the topology. For such spaces, we discuss continuity, homogeneity, and rigidity. We prove that $S(u_t)$ is homogeneous if and only if all the ultrafilters $u_t$ have the same Rudin-Keisler type. We proved that a space of Louveau, and in certain cases, a space of Sirota, are homeomorphic to $Seq(p)$ (i.e., $u_t = p$ for all $t\in Seq$). It follows that for a Ramsey ultrafilter $p$, $Seq(p)$ is a topological group.},
author = {Vaughan, Jerry E.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {ultrafilters; continuity; homeomorphisms; homogeneous; rigid; topological group; Ramsey ultrafilters; selective ultrafilters; ultrafilters; continuity; homeomorphisms; homogeneous; rigid; topological group; Ramsey ultrafilters; selective ultrafilters},
language = {eng},
number = {1},
pages = {209-218},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Two spaces homeomorphic to $Seq(p)$},
url = {http://eudml.org/doc/248763},
volume = {42},
year = {2001},
}
TY - JOUR
AU - Vaughan, Jerry E.
TI - Two spaces homeomorphic to $Seq(p)$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2001
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 42
IS - 1
SP - 209
EP - 218
AB - We consider the spaces called $Seq(u_t)$, constructed on the set $Seq$ of all finite sequences of natural numbers using ultrafilters $u_t$ to define the topology. For such spaces, we discuss continuity, homogeneity, and rigidity. We prove that $S(u_t)$ is homogeneous if and only if all the ultrafilters $u_t$ have the same Rudin-Keisler type. We proved that a space of Louveau, and in certain cases, a space of Sirota, are homeomorphic to $Seq(p)$ (i.e., $u_t = p$ for all $t\in Seq$). It follows that for a Ramsey ultrafilter $p$, $Seq(p)$ is a topological group.
LA - eng
KW - ultrafilters; continuity; homeomorphisms; homogeneous; rigid; topological group; Ramsey ultrafilters; selective ultrafilters; ultrafilters; continuity; homeomorphisms; homogeneous; rigid; topological group; Ramsey ultrafilters; selective ultrafilters
UR - http://eudml.org/doc/248763
ER -
References
top- Arhangel'skii A.V., Franklin S.P., Ordinal invariants for topological spaces, Michigan Math. J. 15 (1968), 313-320. (1968) MR0240767
- Comfort W.W., Negrepontis S., The Theory of Ultrafilters, Springer-Verlag, New York, 1974. Zbl0298.02004MR0396267
- van Douwen E.K., Countable homogeneous spaces and countable groups, in General Topology and its Relations to Modern Analysis and Algebra VI, Proc. Sixth Prague Topological Symposium, 1986, Z. Frolík (ed.); Heldermann Verlag, Berlin, 1988, pp. 135-154. Zbl0648.54016MR0952601
- Dow A., Gubbi A.V., Szymanski A., Rigid Stone spaces within ZFC, Proc. Amer. Math. Soc. 102 (1988), 745-748. (1988) MR0929014
- Dow A., Vaughan J.E., Accessible and biaccessible points in contrasequential spaces, Annals of the New York Academy of Sciences, Vol 704 (1993) 92-102. Zbl0814.54017MR1277846
- El'kin A.G., Some topologies on an infinite set, Uspekhi Mat. Nauk 35:3 (1980), 179-183; English transl.: Russian Mat. Surveys 35:3 (1980) 225-230. (1980) Zbl0461.54030MR0580644
- Jech T., Set Theory, Academic Press, New York, 1978. Zbl1007.03002MR0506523
- Kannan V., Rajagopalan M., Constructions and applications of rigid spaces, Advances in Mathematics 29 (1978), 89-130. (1978) Zbl0424.54029MR0501093
- Kato A., A new construction of extremally disconnected topologies, Topology Appl. 58 (1994), 1-16. (1994) Zbl0804.54030MR1280706
- Levy R., Countable spaces without points of first countability, Pacific J. Math. 70 (1977), 391-399. (1977) Zbl0343.54005MR0482613
- Lindgren W.F., Szymanski A.A., A non-pseudocompact product of countably compact spaces via Seq, Proc. Amer. Math. Soc. 125 (1997), 3741-3746. (1997) Zbl0891.54010MR1415350
- Louveau A., Sur un article de S. Sirota, Bull. Sc. Math., 2e série 96 (1972), 3-7. (1972) Zbl0228.54032MR0308326
- van Mill J., An introduction to , Handbook of Set-theoretic Topology, K. Kunen, J. Vaughan, Eds., North-Holland, Amsterdam, 1984. MR0776630
- Shelah S., Rudin M.E., Unordered types of ultrafilters, Topology Proc. 3 (1978), 199-204. (1978) MR0540490
- Sirota S.M., The product of topological groups and extremally disconnectedness, Mat. Sbornik 79 (121) (1969), 2 169-18. (1969) MR0242988
- Szymanski A., Products and measurable cardinals, Rend. Circ. Mat. Palermo (2) Suppl. No. 11, (1985), 105-112 (1987). Zbl0635.54010MR0897976
- Trnková V., Homeomorphisms of products of countable spaces, Proc. Amer. Math. Soc. (1982). MR0682479
- Trnková V., Homeomorphisms of products of Boolean algebras, Fund. Math 126 (1985), 46-61. (1985) MR0817079
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.