Two spaces homeomorphic to S e q ( p )

Jerry E. Vaughan

Commentationes Mathematicae Universitatis Carolinae (2001)

  • Volume: 42, Issue: 1, page 209-218
  • ISSN: 0010-2628

Abstract

top
We consider the spaces called S e q ( u t ) , constructed on the set S e q of all finite sequences of natural numbers using ultrafilters u t to define the topology. For such spaces, we discuss continuity, homogeneity, and rigidity. We prove that S ( u t ) is homogeneous if and only if all the ultrafilters u t have the same Rudin-Keisler type. We proved that a space of Louveau, and in certain cases, a space of Sirota, are homeomorphic to S e q ( p ) (i.e., u t = p for all t S e q ). It follows that for a Ramsey ultrafilter p , S e q ( p ) is a topological group.

How to cite

top

Vaughan, Jerry E.. "Two spaces homeomorphic to $Seq(p)$." Commentationes Mathematicae Universitatis Carolinae 42.1 (2001): 209-218. <http://eudml.org/doc/248763>.

@article{Vaughan2001,
abstract = {We consider the spaces called $Seq(u_t)$, constructed on the set $Seq$ of all finite sequences of natural numbers using ultrafilters $u_t$ to define the topology. For such spaces, we discuss continuity, homogeneity, and rigidity. We prove that $S(u_t)$ is homogeneous if and only if all the ultrafilters $u_t$ have the same Rudin-Keisler type. We proved that a space of Louveau, and in certain cases, a space of Sirota, are homeomorphic to $Seq(p)$ (i.e., $u_t = p$ for all $t\in Seq$). It follows that for a Ramsey ultrafilter $p$, $Seq(p)$ is a topological group.},
author = {Vaughan, Jerry E.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {ultrafilters; continuity; homeomorphisms; homogeneous; rigid; topological group; Ramsey ultrafilters; selective ultrafilters; ultrafilters; continuity; homeomorphisms; homogeneous; rigid; topological group; Ramsey ultrafilters; selective ultrafilters},
language = {eng},
number = {1},
pages = {209-218},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Two spaces homeomorphic to $Seq(p)$},
url = {http://eudml.org/doc/248763},
volume = {42},
year = {2001},
}

TY - JOUR
AU - Vaughan, Jerry E.
TI - Two spaces homeomorphic to $Seq(p)$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2001
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 42
IS - 1
SP - 209
EP - 218
AB - We consider the spaces called $Seq(u_t)$, constructed on the set $Seq$ of all finite sequences of natural numbers using ultrafilters $u_t$ to define the topology. For such spaces, we discuss continuity, homogeneity, and rigidity. We prove that $S(u_t)$ is homogeneous if and only if all the ultrafilters $u_t$ have the same Rudin-Keisler type. We proved that a space of Louveau, and in certain cases, a space of Sirota, are homeomorphic to $Seq(p)$ (i.e., $u_t = p$ for all $t\in Seq$). It follows that for a Ramsey ultrafilter $p$, $Seq(p)$ is a topological group.
LA - eng
KW - ultrafilters; continuity; homeomorphisms; homogeneous; rigid; topological group; Ramsey ultrafilters; selective ultrafilters; ultrafilters; continuity; homeomorphisms; homogeneous; rigid; topological group; Ramsey ultrafilters; selective ultrafilters
UR - http://eudml.org/doc/248763
ER -

References

top
  1. Arhangel'skii A.V., Franklin S.P., Ordinal invariants for topological spaces, Michigan Math. J. 15 (1968), 313-320. (1968) MR0240767
  2. Comfort W.W., Negrepontis S., The Theory of Ultrafilters, Springer-Verlag, New York, 1974. Zbl0298.02004MR0396267
  3. van Douwen E.K., Countable homogeneous spaces and countable groups, in General Topology and its Relations to Modern Analysis and Algebra VI, Proc. Sixth Prague Topological Symposium, 1986, Z. Frolík (ed.); Heldermann Verlag, Berlin, 1988, pp. 135-154. Zbl0648.54016MR0952601
  4. Dow A., Gubbi A.V., Szymanski A., Rigid Stone spaces within ZFC, Proc. Amer. Math. Soc. 102 (1988), 745-748. (1988) MR0929014
  5. Dow A., Vaughan J.E., Accessible and biaccessible points in contrasequential spaces, Annals of the New York Academy of Sciences, Vol 704 (1993) 92-102. Zbl0814.54017MR1277846
  6. El'kin A.G., Some topologies on an infinite set, Uspekhi Mat. Nauk 35:3 (1980), 179-183; English transl.: Russian Mat. Surveys 35:3 (1980) 225-230. (1980) Zbl0461.54030MR0580644
  7. Jech T., Set Theory, Academic Press, New York, 1978. Zbl1007.03002MR0506523
  8. Kannan V., Rajagopalan M., Constructions and applications of rigid spaces, Advances in Mathematics 29 (1978), 89-130. (1978) Zbl0424.54029MR0501093
  9. Kato A., A new construction of extremally disconnected topologies, Topology Appl. 58 (1994), 1-16. (1994) Zbl0804.54030MR1280706
  10. Levy R., Countable spaces without points of first countability, Pacific J. Math. 70 (1977), 391-399. (1977) Zbl0343.54005MR0482613
  11. Lindgren W.F., Szymanski A.A., A non-pseudocompact product of countably compact spaces via Seq, Proc. Amer. Math. Soc. 125 (1997), 3741-3746. (1997) Zbl0891.54010MR1415350
  12. Louveau A., Sur un article de S. Sirota, Bull. Sc. Math., 2e série 96 (1972), 3-7. (1972) Zbl0228.54032MR0308326
  13. van Mill J., An introduction to β ø m e g a , Handbook of Set-theoretic Topology, K. Kunen, J. Vaughan, Eds., North-Holland, Amsterdam, 1984. MR0776630
  14. Shelah S., Rudin M.E., Unordered types of ultrafilters, Topology Proc. 3 (1978), 199-204. (1978) MR0540490
  15. Sirota S.M., The product of topological groups and extremally disconnectedness, Mat. Sbornik 79 (121) (1969), 2 169-18. (1969) MR0242988
  16. Szymanski A., Products and measurable cardinals, Rend. Circ. Mat. Palermo (2) Suppl. No. 11, (1985), 105-112 (1987). Zbl0635.54010MR0897976
  17. Trnková V., Homeomorphisms of products of countable spaces, Proc. Amer. Math. Soc. (1982). MR0682479
  18. Trnková V., Homeomorphisms of products of Boolean algebras, Fund. Math 126 (1985), 46-61. (1985) MR0817079

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.