On the sign of Colombeau functions and applications to conservation laws
Commentationes Mathematicae Universitatis Carolinae (2009)
- Volume: 50, Issue: 2, page 245-264
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topJelínek, Jiří, and Pražák, Dalibor. "On the sign of Colombeau functions and applications to conservation laws." Commentationes Mathematicae Universitatis Carolinae 50.2 (2009): 245-264. <http://eudml.org/doc/32496>.
@article{Jelínek2009,
abstract = {A generalized concept of sign is introduced in the context of Colombeau algebras. It extends the sign of the point-value in the case of sufficiently regular functions. This concept of generalized sign is then used to characterize the entropy condition for discontinuous solutions of scalar conservation laws.},
author = {Jelínek, Jiří, Pražák, Dalibor},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Colombeau algebra; generalized sign; conservation law; entropy condition; Colombeau algebra; generalized sign; conservation law; entropy condition},
language = {eng},
number = {2},
pages = {245-264},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the sign of Colombeau functions and applications to conservation laws},
url = {http://eudml.org/doc/32496},
volume = {50},
year = {2009},
}
TY - JOUR
AU - Jelínek, Jiří
AU - Pražák, Dalibor
TI - On the sign of Colombeau functions and applications to conservation laws
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2009
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 50
IS - 2
SP - 245
EP - 264
AB - A generalized concept of sign is introduced in the context of Colombeau algebras. It extends the sign of the point-value in the case of sufficiently regular functions. This concept of generalized sign is then used to characterize the entropy condition for discontinuous solutions of scalar conservation laws.
LA - eng
KW - Colombeau algebra; generalized sign; conservation law; entropy condition; Colombeau algebra; generalized sign; conservation law; entropy condition
UR - http://eudml.org/doc/32496
ER -
References
top- Colombeau J.-F., 10.1090/S0273-0979-1990-15919-1, Bull. Amer. Math. Soc. (N.S.) 23 (1990), no. 2, 251--268. Zbl0819.46026MR1028141DOI10.1090/S0273-0979-1990-15919-1
- Colombeau J.-F., Elementary introduction to new generalized functions, North-Holland Mathematics Studies 113, Notes on Pure Mathematics 103, North-Holland Publishing Co., Amsterdam, 1985. Zbl0584.46024MR0808961
- Dafermos C.M., Hyperbolic conservation laws in continuum physics, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 325, Springer, Berlin, 2000. Zbl1078.35001MR1763936
- Danilov V.G., Omel'yanov G.A., Calculation of the singularity dynamics for quadratic nonlinear hyperbolic equations. Example: the Hopf equation, Nonlinear Theory of Generalized Functions (Vienna, 1997), Chapman & Hall/CRC Res. Notes Math. 401, Chapman & Hall/CRC, Boca Raton, FL, 1999, 63--74. Zbl0932.35144MR1699862
- DiPerna R.J., Lions P.-L., 10.1007/BF01393835, Invent. Math. 98 (1989), no. 3, 511--547. Zbl0696.34049MR1022305DOI10.1007/BF01393835
- Lions P.-L., Perthame B., Tadmor E., 10.1090/S0894-0347-1994-1201239-3, J. Amer. Math. Soc. 7 (1994), no. 1, 169--191. Zbl0820.35094MR1201239DOI10.1090/S0894-0347-1994-1201239-3
- Lojasiewicz S., Sur la valeur et la limite d'une distribution en un point, Studia Math. 16 (1957), 1--36. Zbl0086.09405MR0087905
- Nozari K., Afrouzi G.A., Travelling wave solutions to some PDEs of mathematical physics, Int. J. Math. Math. Sci. (2004), no. 21--24, 1105--1120. Zbl1069.35057MR2085053
- Oberguggenberger M., Multiplication of distributions and applications to partial differential equations, Pitman Research Notes in Mathematics Series 259, Longman Scientific & Technical, Harlow, 1992. Zbl0818.46036MR1187755
- Perthame B., Kinetic formulation of conservation laws, Oxford Lecture Series in Mathematics and its Applications 21, Oxford University Press, Oxford, 2002. Zbl1030.35002MR2064166
- Rubio J.E., The global control of shock waves, Nonlinear Theory of Generalized Functions (Vienna, 1997), Chapman & Hall/CRC Res. Notes Math. 401, Chapman & Hall/CRC, Boca Raton, FL, 1999, pp. 355--367. Zbl0933.35135MR1699875
- Rudin W., Functional analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York, 1973. Zbl0867.46001MR0365062
- Schwartz L., Théorie des distributions, Publications de l'Institut de Mathématique de l'Université de Strasbourg, No. IX--X, Nouvelle édition, entiérement corrigée, refondue et augmentée, Hermann, Paris, 1966. Zbl0962.46025MR0209834
- Shelkovich V.M., 10.1002/mana.200310309, Math. Nachr. 278 (2005), no. 11, 1318--1340. Zbl1115.46035MR2163299DOI10.1002/mana.200310309
- Villarreal F., Colombeau's theory and shock wave solutions for systems of PDEs, Electron. J. Differential Equations 2000, no. 21, 17 pp. Zbl0966.46022MR1744084
- Ziemer W.P., 10.1007/978-1-4612-1015-3_5, Graduate Texts in Mathematics 120, Springer, New York, 1989. Zbl0692.46022MR1014685DOI10.1007/978-1-4612-1015-3_5
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.