More on cardinal invariants of analytic P -ideals

Barnabás Farkas; Lajos Soukup

Commentationes Mathematicae Universitatis Carolinae (2009)

  • Volume: 50, Issue: 2, page 281-295
  • ISSN: 0010-2628

Abstract

top
Given an ideal on ω let 𝔞 ( ) ( 𝔞 ¯ ( ) ) be minimum of the cardinalities of infinite (uncountable) maximal -almost disjoint subsets of [ ω ] ω . We show that 𝔞 ( h ) > ω if h is a summable ideal; but 𝔞 ( 𝒵 μ ) = ω for any tall density ideal 𝒵 μ including the density zero ideal 𝒵 . On the other hand, you have 𝔟 𝔞 ¯ ( ) for any analytic P -ideal , and 𝔞 ¯ ( 𝒵 μ ) 𝔞 for each density ideal 𝒵 μ . For each ideal on ω denote 𝔟 and 𝔡 the unbounding and dominating numbers of ω ω , where f g iff { n ω : f ( n ) > g ( n ) } . We show that 𝔟 = 𝔟 and 𝔡 = 𝔡 for each analytic P -ideal . Given a Borel ideal on ω we say that a poset is -bounding iff x V y V x y . is -dominating iff y V x V x * y . For each analytic P -ideal if a poset has the Sacks property then is -bounding; moreover if is tall as well then the property -bounding/ -dominating implies ω ω -bounding/adding dominating reals, and the converses of these two implications are false. For the density zero ideal 𝒵 we can prove more: (i) a poset is 𝒵 -bounding iff it has the Sacks property, (ii) if adds a slalom capturing all ground model reals then is 𝒵 -dominating.

How to cite

top

Farkas, Barnabás, and Soukup, Lajos. "More on cardinal invariants of analytic $P$-ideals." Commentationes Mathematicae Universitatis Carolinae 50.2 (2009): 281-295. <http://eudml.org/doc/32499>.

@article{Farkas2009,
abstract = {Given an ideal $\mathcal \{I\}$ on $\omega $ let $\mathfrak \{a\} (\mathcal \{I\})$ ($\bar\{\mathfrak \{a\}\}(\mathcal \{I\})$) be minimum of the cardinalities of infinite (uncountable) maximal $\mathcal \{I\}$-almost disjoint subsets of $[\{\omega \}]^\{\omega \}$. We show that $\mathfrak \{a\} (\mathcal \{I\}_h)>\{\omega \}$ if $\mathcal \{I\}_h$ is a summable ideal; but $\mathfrak \{a\} (\{\mathcal \{Z\}_\{\vec\{\mu \}\}\})= \{\omega \}$ for any tall density ideal $\mathcal \{Z\}_\{\vec\{\mu \}\}$ including the density zero ideal $\mathcal \{Z\}$. On the other hand, you have $\mathfrak \{b\}\le \bar\{\mathfrak \{a\}\}(\mathcal \{I\})$ for any analytic $P$-ideal $\mathcal \{I\}$, and $\bar\{\mathfrak \{a\}\}(\mathcal \{Z\}_\{\vec\{\mu \}\})\le \mathfrak \{a\}$ for each density ideal $\mathcal \{Z\}_\{\vec\{\mu \}\}$. For each ideal $\mathcal \{I\}$ on $\omega $ denote $\mathfrak \{b\}_\{\mathcal \{I\}\}$ and $\mathfrak \{d\}_\{\mathcal \{I\}\}$ the unbounding and dominating numbers of $\langle \omega ^\omega , \le _\{\mathcal \{I\}\}\rangle $ where $f\le _\{\mathcal \{I\}\} g$ iff $\lbrace n\in \omega :f(n)> g(n)\rbrace \in \mathcal \{I\}$. We show that $\mathfrak \{b\}_\{\mathcal \{I\}\}= \mathfrak \{b\}$ and $\mathfrak \{d\}_\{\mathcal \{I\}\}= \mathfrak \{d\}$ for each analytic $P$-ideal $\mathcal \{I\}$. Given a Borel ideal $\mathcal \{I\}$ on $\omega $ we say that a poset $\mathbb \{P\}$ is $\mathcal \{I\}$-bounding iff $\forall \, x\in \mathcal \{I\}\cap V^\{\mathbb \{P\}\}$$\exists \, y\in \mathcal \{I\}\cap V$$x\subseteq y$. $\mathbb \{P\}$ is $\mathcal \{I\}$-dominating iff $\exists \, y\in \mathcal \{I\}\cap V^\{\mathbb \{P\}\}$$\forall \, x\in \mathcal \{I\}\cap V$$x\subseteq ^* y$. For each analytic $P$-ideal $\mathcal \{I\}$ if a poset $\mathbb \{P\}$ has the Sacks property then $\mathbb \{P\}$ is $\mathcal \{I\}$-bounding; moreover if $\mathcal \{I\}$ is tall as well then the property $\mathcal \{I\}$-bounding/$\mathcal \{I\}$-dominating implies $\{\omega \}^\{\omega \}$-bounding/adding dominating reals, and the converses of these two implications are false. For the density zero ideal $\mathcal \{Z\}$ we can prove more: (i) a poset $\mathbb \{P\}$ is $\mathcal \{Z\}$-bounding iff it has the Sacks property, (ii) if $\mathbb \{P\}$ adds a slalom capturing all ground model reals then $\mathbb \{P\}$ is $\mathcal \{Z\}$-dominating.},
author = {Farkas, Barnabás, Soukup, Lajos},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {analytic $P$-ideals; cardinal invariants; forcing; analytic -ideal; cardinal invariant; forcing},
language = {eng},
number = {2},
pages = {281-295},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {More on cardinal invariants of analytic $P$-ideals},
url = {http://eudml.org/doc/32499},
volume = {50},
year = {2009},
}

TY - JOUR
AU - Farkas, Barnabás
AU - Soukup, Lajos
TI - More on cardinal invariants of analytic $P$-ideals
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2009
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 50
IS - 2
SP - 281
EP - 295
AB - Given an ideal $\mathcal {I}$ on $\omega $ let $\mathfrak {a} (\mathcal {I})$ ($\bar{\mathfrak {a}}(\mathcal {I})$) be minimum of the cardinalities of infinite (uncountable) maximal $\mathcal {I}$-almost disjoint subsets of $[{\omega }]^{\omega }$. We show that $\mathfrak {a} (\mathcal {I}_h)>{\omega }$ if $\mathcal {I}_h$ is a summable ideal; but $\mathfrak {a} ({\mathcal {Z}_{\vec{\mu }}})= {\omega }$ for any tall density ideal $\mathcal {Z}_{\vec{\mu }}$ including the density zero ideal $\mathcal {Z}$. On the other hand, you have $\mathfrak {b}\le \bar{\mathfrak {a}}(\mathcal {I})$ for any analytic $P$-ideal $\mathcal {I}$, and $\bar{\mathfrak {a}}(\mathcal {Z}_{\vec{\mu }})\le \mathfrak {a}$ for each density ideal $\mathcal {Z}_{\vec{\mu }}$. For each ideal $\mathcal {I}$ on $\omega $ denote $\mathfrak {b}_{\mathcal {I}}$ and $\mathfrak {d}_{\mathcal {I}}$ the unbounding and dominating numbers of $\langle \omega ^\omega , \le _{\mathcal {I}}\rangle $ where $f\le _{\mathcal {I}} g$ iff $\lbrace n\in \omega :f(n)> g(n)\rbrace \in \mathcal {I}$. We show that $\mathfrak {b}_{\mathcal {I}}= \mathfrak {b}$ and $\mathfrak {d}_{\mathcal {I}}= \mathfrak {d}$ for each analytic $P$-ideal $\mathcal {I}$. Given a Borel ideal $\mathcal {I}$ on $\omega $ we say that a poset $\mathbb {P}$ is $\mathcal {I}$-bounding iff $\forall \, x\in \mathcal {I}\cap V^{\mathbb {P}}$$\exists \, y\in \mathcal {I}\cap V$$x\subseteq y$. $\mathbb {P}$ is $\mathcal {I}$-dominating iff $\exists \, y\in \mathcal {I}\cap V^{\mathbb {P}}$$\forall \, x\in \mathcal {I}\cap V$$x\subseteq ^* y$. For each analytic $P$-ideal $\mathcal {I}$ if a poset $\mathbb {P}$ has the Sacks property then $\mathbb {P}$ is $\mathcal {I}$-bounding; moreover if $\mathcal {I}$ is tall as well then the property $\mathcal {I}$-bounding/$\mathcal {I}$-dominating implies ${\omega }^{\omega }$-bounding/adding dominating reals, and the converses of these two implications are false. For the density zero ideal $\mathcal {Z}$ we can prove more: (i) a poset $\mathbb {P}$ is $\mathcal {Z}$-bounding iff it has the Sacks property, (ii) if $\mathbb {P}$ adds a slalom capturing all ground model reals then $\mathbb {P}$ is $\mathcal {Z}$-dominating.
LA - eng
KW - analytic $P$-ideals; cardinal invariants; forcing; analytic -ideal; cardinal invariant; forcing
UR - http://eudml.org/doc/32499
ER -

References

top
  1. Farah I., Analytic quotients: theory of liftings for quotients over analytic ideals on the integers, Mem. Amer. Math. Soc. 148 (2000), no. 702, 177 pp. Zbl0966.03045MR1711328
  2. Fremlin D.H., Measure Theory. Set-theoretic Measure Theory, Torres Fremlin, Colchester, England, 2004; available at . 
  3. Kunen K., Set Theory, An Introduction to Independence Proofs, North Holland, Amsterdam, New York, Oxford, 1980. Zbl0534.03026MR0597342
  4. Laflamme C., Zhu J.-P., 10.2307/2586852, J. Symbolic Logic 63 (1998), no. 2, 584--592. Zbl0911.04001MR1627310DOI10.2307/2586852
  5. Louveau A., Veličković B., 10.1016/S0168-0072(98)00065-7, Ann. Pure Appl. Logic 99 (1999), 171--195. MR1708151DOI10.1016/S0168-0072(98)00065-7
  6. Rudin M.E., Partial orders on the types of β ω , Trans. Amer. Math. Soc. 155 (1971), 353--362. MR0273581
  7. Solecki S., 10.1016/S0168-0072(98)00051-7, Ann. Pure Appl. Logic 99 (1999), 51--72. MR1708146DOI10.1016/S0168-0072(98)00051-7
  8. Vojtáš P., Generalized Galois-Tukey-connections between explicit relations on classical objects of real analysis, Set Theory of the Reals (Ramat Gan, 1991), Israel Math. Conf. Proc., 6, Bar-Ilan Univ., Ramat Gan, 1993, pp. 619--643. MR1234291

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.