Lattices of Scott-closed sets
Commentationes Mathematicae Universitatis Carolinae (2009)
- Volume: 50, Issue: 2, page 297-314
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topHo, Weng Kin, and Zhao, Dong Sheng. "Lattices of Scott-closed sets." Commentationes Mathematicae Universitatis Carolinae 50.2 (2009): 297-314. <http://eudml.org/doc/32500>.
@article{Ho2009,
abstract = {A dcpo $P$ is continuous if and only if the lattice $C(P)$ of all Scott-closed subsets of $P$ is completely distributive. However, in the case where $P$ is a non-continuous dcpo, little is known about the order structure of $C(P)$. In this paper, we study the order-theoretic properties of $C(P)$ for general dcpo’s $P$. The main results are: (i) every $C(P)$ is C-continuous; (ii) a complete lattice $L$ is isomorphic to $C(P)$ for a complete semilattice $P$ if and only if $L$ is weak-stably C-algebraic; (iii) for any two complete semilattices $P$ and $Q$, $P$ and $Q$ are isomorphic if and only if $C(P)$ and $C(Q)$ are isomorphic. In addition, we extend the function $P\mapsto C(P)$ to a left adjoint functor from the category DCPO of dcpo’s to the category CPAlg of C-prealgebraic lattices.},
author = {Ho, Weng Kin, Zhao, Dong Sheng},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {domain; complete semilattice; Scott-closed set; C-continuous lattice; C-algebraic lattice; domain; complete semilattice; Scott-closed set; C-algebraic lattice},
language = {eng},
number = {2},
pages = {297-314},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Lattices of Scott-closed sets},
url = {http://eudml.org/doc/32500},
volume = {50},
year = {2009},
}
TY - JOUR
AU - Ho, Weng Kin
AU - Zhao, Dong Sheng
TI - Lattices of Scott-closed sets
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2009
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 50
IS - 2
SP - 297
EP - 314
AB - A dcpo $P$ is continuous if and only if the lattice $C(P)$ of all Scott-closed subsets of $P$ is completely distributive. However, in the case where $P$ is a non-continuous dcpo, little is known about the order structure of $C(P)$. In this paper, we study the order-theoretic properties of $C(P)$ for general dcpo’s $P$. The main results are: (i) every $C(P)$ is C-continuous; (ii) a complete lattice $L$ is isomorphic to $C(P)$ for a complete semilattice $P$ if and only if $L$ is weak-stably C-algebraic; (iii) for any two complete semilattices $P$ and $Q$, $P$ and $Q$ are isomorphic if and only if $C(P)$ and $C(Q)$ are isomorphic. In addition, we extend the function $P\mapsto C(P)$ to a left adjoint functor from the category DCPO of dcpo’s to the category CPAlg of C-prealgebraic lattices.
LA - eng
KW - domain; complete semilattice; Scott-closed set; C-continuous lattice; C-algebraic lattice; domain; complete semilattice; Scott-closed set; C-algebraic lattice
UR - http://eudml.org/doc/32500
ER -
References
top- Abramsky S., Domain Theory and the Logic of Observable Properties, PhD. Thesis, University of London, 1987. MR1365749
- Abramsky S., Jung A., Domain Theory, in Handbook of Logic in Computer Science, vol. 3, S. Abramsky, D.M. Gabbay, T.S.E. Maibaum, Eds., Clarendon Press, New York, 1994, pp. 1--168. MR1365749
- Banaschewski B., On the topologies of injective spaces, Continuous Lattices and their Applications (Bremen, 1982), Lecture Notes in Pure and Appl. Math., 101, Dekker, New York, 1985, pp. 1--8. Zbl0614.54033MR0825992
- Davey B.A., Priestley H.A., Introduction to Lattices and Order, second edition, Cambridge Text Books, Cambridge University Press, Cambridge, 1994. Zbl1002.06001MR1902334
- Escardó M.H., Injective locales over perfect embeddings and algebras of the upper powerlocale monad, Appl. Gen. Topol. 4 (2003), no. 1, 193--200. MR2021762
- Gierz G., Hoffmann K.H., Keimel K., Lawson J.D., Mislove M.W., Scott D.S., A Compendium of Continuous Lattices, Springer, Berlin, 1980. MR0614752
- Gierz G., Hoffmann K.H., Keimel K., Lawson J.D., Mislove M.W., Scott D.S., Continuous Lattices and Domains, Cambridge University Press, Cambridge, 2003. MR1975381
- Heckmann R., 10.1016/S0020-0190(05)80003-1, Inform. Process. Lett. 40 (1991), no. 1, 7--11. Zbl0748.68038MR1134002DOI10.1016/S0020-0190(05)80003-1
- W.K. Ho, Theory of Frames, Master Thesis, Nanyang Technological University, 2002. Zbl1162.06003
- Hoffmann R.E., 10.1007/BFb0089907, in Continuous Lattices, Lecture Notes in Mathematics, 871, Springer, Berlin-Heidelberg, 1981, pp. 159--208. DOI10.1007/BFb0089907
- Isbell J.R., 10.1090/S0002-9939-1982-0656096-4, Proc. Amer. Math. Soc. 85 (1982), 333--334. Zbl0492.06006MR0656096DOI10.1090/S0002-9939-1982-0656096-4
- Johnstone P.T., 10.1007/BFb0089911, in Continuous Lattices, Lecture Notes in Mathematics, 871, Springer, Berlin-Heidelberg, 1981, pp. 282--283. Zbl0469.06002DOI10.1007/BFb0089911
- Johnstone P.T., Stone Spaces, Cambridge Studies in Advanced Mathematics, 3, Cambridge University Press, Cambridge, 1982. Zbl0586.54001MR0698074
- Kock A., 10.1016/0022-4049(94)00111-U, J. Pure Appl. Algebra 104 (1995), no. 1, 41--59. Zbl0849.18008MR1359690DOI10.1016/0022-4049(94)00111-U
- Lawson J., The duality of continuous posets, Houston J. Math. 5 (1979), 357--394. Zbl0428.06003MR0559976
- Mac Lane S., Categories for the Working Mathematician, Springer, New York-Berlin, 1971. Zbl0906.18001
- Mislove M.W., 10.1016/S1571-0661(04)80085-9, Electron. Notes Theor. Comput. Sci., 20, Elsevier, Amsterdam, 1999, pp. 287--300. Zbl0924.68112MR1719008DOI10.1016/S1571-0661(04)80085-9
- Papert S., Which distributive lattices are lattices of closed sets?, Proc. Cambridge Philos. Soc. 55 (1959), 172--176. Zbl0178.33703MR0104601
- Raney G.N., 10.1090/S0002-9939-1952-0052392-3, Proc. Amer. Math. Soc. 3 (1952), 667--680. Zbl0053.35201MR0052392DOI10.1090/S0002-9939-1952-0052392-3
- Scott D., 10.1137/0205037, SIAM J. Comput. 5 (1976), no. 3, 522--587. Zbl0337.02018MR0437330DOI10.1137/0205037
- Schalk A., Algebras for generalised power constructions, PhD. Thesis, Technische Hochschule Darmstadt, 1993.
- Smyth M.B., Topology, in Handbook of Logic in Computer Science, vol. 1, Oxford University Press, New York, 1992. Zbl1039.68504MR1426367
- Venugopalan G., Union-complete subset systems, Houston J. Math. 14 (1988), 583--600. Zbl0689.06005MR0998459
- Vickers S.J., Topology via Logic, Cambridge University Press, Cambridge, 1989. Zbl0922.54002MR1002193
- Zhao D., 10.1016/0022-247X(87)90214-9, J. Math. Anal. Appl. 128 (1987), 64--79. Zbl0639.54006MR0915967DOI10.1016/0022-247X(87)90214-9
- Zhao D., 10.4153/CMB-1997-004-4, Canad. Math. Bull. 40 (1997), no. 1, 39--46. Zbl0871.06007MR1443723DOI10.4153/CMB-1997-004-4
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.