Lattices of Scott-closed sets

Weng Kin Ho; Dong Sheng Zhao

Commentationes Mathematicae Universitatis Carolinae (2009)

  • Volume: 50, Issue: 2, page 297-314
  • ISSN: 0010-2628

Abstract

top
A dcpo P is continuous if and only if the lattice C ( P ) of all Scott-closed subsets of P is completely distributive. However, in the case where P is a non-continuous dcpo, little is known about the order structure of C ( P ) . In this paper, we study the order-theoretic properties of C ( P ) for general dcpo’s P . The main results are: (i) every C ( P ) is C-continuous; (ii) a complete lattice L is isomorphic to C ( P ) for a complete semilattice P if and only if L is weak-stably C-algebraic; (iii) for any two complete semilattices P and Q , P and Q are isomorphic if and only if C ( P ) and C ( Q ) are isomorphic. In addition, we extend the function P C ( P ) to a left adjoint functor from the category DCPO of dcpo’s to the category CPAlg of C-prealgebraic lattices.

How to cite

top

Ho, Weng Kin, and Zhao, Dong Sheng. "Lattices of Scott-closed sets." Commentationes Mathematicae Universitatis Carolinae 50.2 (2009): 297-314. <http://eudml.org/doc/32500>.

@article{Ho2009,
abstract = {A dcpo $P$ is continuous if and only if the lattice $C(P)$ of all Scott-closed subsets of $P$ is completely distributive. However, in the case where $P$ is a non-continuous dcpo, little is known about the order structure of $C(P)$. In this paper, we study the order-theoretic properties of $C(P)$ for general dcpo’s $P$. The main results are: (i) every $C(P)$ is C-continuous; (ii) a complete lattice $L$ is isomorphic to $C(P)$ for a complete semilattice $P$ if and only if $L$ is weak-stably C-algebraic; (iii) for any two complete semilattices $P$ and $Q$, $P$ and $Q$ are isomorphic if and only if $C(P)$ and $C(Q)$ are isomorphic. In addition, we extend the function $P\mapsto C(P)$ to a left adjoint functor from the category DCPO of dcpo’s to the category CPAlg of C-prealgebraic lattices.},
author = {Ho, Weng Kin, Zhao, Dong Sheng},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {domain; complete semilattice; Scott-closed set; C-continuous lattice; C-algebraic lattice; domain; complete semilattice; Scott-closed set; C-algebraic lattice},
language = {eng},
number = {2},
pages = {297-314},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Lattices of Scott-closed sets},
url = {http://eudml.org/doc/32500},
volume = {50},
year = {2009},
}

TY - JOUR
AU - Ho, Weng Kin
AU - Zhao, Dong Sheng
TI - Lattices of Scott-closed sets
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2009
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 50
IS - 2
SP - 297
EP - 314
AB - A dcpo $P$ is continuous if and only if the lattice $C(P)$ of all Scott-closed subsets of $P$ is completely distributive. However, in the case where $P$ is a non-continuous dcpo, little is known about the order structure of $C(P)$. In this paper, we study the order-theoretic properties of $C(P)$ for general dcpo’s $P$. The main results are: (i) every $C(P)$ is C-continuous; (ii) a complete lattice $L$ is isomorphic to $C(P)$ for a complete semilattice $P$ if and only if $L$ is weak-stably C-algebraic; (iii) for any two complete semilattices $P$ and $Q$, $P$ and $Q$ are isomorphic if and only if $C(P)$ and $C(Q)$ are isomorphic. In addition, we extend the function $P\mapsto C(P)$ to a left adjoint functor from the category DCPO of dcpo’s to the category CPAlg of C-prealgebraic lattices.
LA - eng
KW - domain; complete semilattice; Scott-closed set; C-continuous lattice; C-algebraic lattice; domain; complete semilattice; Scott-closed set; C-algebraic lattice
UR - http://eudml.org/doc/32500
ER -

References

top
  1. Abramsky S., Domain Theory and the Logic of Observable Properties, PhD. Thesis, University of London, 1987. MR1365749
  2. Abramsky S., Jung A., Domain Theory, in Handbook of Logic in Computer Science, vol. 3, S. Abramsky, D.M. Gabbay, T.S.E. Maibaum, Eds., Clarendon Press, New York, 1994, pp. 1--168. MR1365749
  3. Banaschewski B., On the topologies of injective spaces, Continuous Lattices and their Applications (Bremen, 1982), Lecture Notes in Pure and Appl. Math., 101, Dekker, New York, 1985, pp. 1--8. Zbl0614.54033MR0825992
  4. Davey B.A., Priestley H.A., Introduction to Lattices and Order, second edition, Cambridge Text Books, Cambridge University Press, Cambridge, 1994. Zbl1002.06001MR1902334
  5. Escardó M.H., Injective locales over perfect embeddings and algebras of the upper powerlocale monad, Appl. Gen. Topol. 4 (2003), no. 1, 193--200. MR2021762
  6. Gierz G., Hoffmann K.H., Keimel K., Lawson J.D., Mislove M.W., Scott D.S., A Compendium of Continuous Lattices, Springer, Berlin, 1980. MR0614752
  7. Gierz G., Hoffmann K.H., Keimel K., Lawson J.D., Mislove M.W., Scott D.S., Continuous Lattices and Domains, Cambridge University Press, Cambridge, 2003. MR1975381
  8. Heckmann R., 10.1016/S0020-0190(05)80003-1, Inform. Process. Lett. 40 (1991), no. 1, 7--11. Zbl0748.68038MR1134002DOI10.1016/S0020-0190(05)80003-1
  9. W.K. Ho, Theory of Frames, Master Thesis, Nanyang Technological University, 2002. Zbl1162.06003
  10. Hoffmann R.E., 10.1007/BFb0089907, in Continuous Lattices, Lecture Notes in Mathematics, 871, Springer, Berlin-Heidelberg, 1981, pp. 159--208. DOI10.1007/BFb0089907
  11. Isbell J.R., 10.1090/S0002-9939-1982-0656096-4, Proc. Amer. Math. Soc. 85 (1982), 333--334. Zbl0492.06006MR0656096DOI10.1090/S0002-9939-1982-0656096-4
  12. Johnstone P.T., 10.1007/BFb0089911, in Continuous Lattices, Lecture Notes in Mathematics, 871, Springer, Berlin-Heidelberg, 1981, pp. 282--283. Zbl0469.06002DOI10.1007/BFb0089911
  13. Johnstone P.T., Stone Spaces, Cambridge Studies in Advanced Mathematics, 3, Cambridge University Press, Cambridge, 1982. Zbl0586.54001MR0698074
  14. Kock A., 10.1016/0022-4049(94)00111-U, J. Pure Appl. Algebra 104 (1995), no. 1, 41--59. Zbl0849.18008MR1359690DOI10.1016/0022-4049(94)00111-U
  15. Lawson J., The duality of continuous posets, Houston J. Math. 5 (1979), 357--394. Zbl0428.06003MR0559976
  16. Mac Lane S., Categories for the Working Mathematician, Springer, New York-Berlin, 1971. Zbl0906.18001
  17. Mislove M.W., 10.1016/S1571-0661(04)80085-9, Electron. Notes Theor. Comput. Sci., 20, Elsevier, Amsterdam, 1999, pp. 287--300. Zbl0924.68112MR1719008DOI10.1016/S1571-0661(04)80085-9
  18. Papert S., Which distributive lattices are lattices of closed sets?, Proc. Cambridge Philos. Soc. 55 (1959), 172--176. Zbl0178.33703MR0104601
  19. Raney G.N., 10.1090/S0002-9939-1952-0052392-3, Proc. Amer. Math. Soc. 3 (1952), 667--680. Zbl0053.35201MR0052392DOI10.1090/S0002-9939-1952-0052392-3
  20. Scott D., 10.1137/0205037, SIAM J. Comput. 5 (1976), no. 3, 522--587. Zbl0337.02018MR0437330DOI10.1137/0205037
  21. Schalk A., Algebras for generalised power constructions, PhD. Thesis, Technische Hochschule Darmstadt, 1993. 
  22. Smyth M.B., Topology, in Handbook of Logic in Computer Science, vol. 1, Oxford University Press, New York, 1992. Zbl1039.68504MR1426367
  23. Venugopalan G., Union-complete subset systems, Houston J. Math. 14 (1988), 583--600. Zbl0689.06005MR0998459
  24. Vickers S.J., Topology via Logic, Cambridge University Press, Cambridge, 1989. Zbl0922.54002MR1002193
  25. Zhao D., 10.1016/0022-247X(87)90214-9, J. Math. Anal. Appl. 128 (1987), 64--79. Zbl0639.54006MR0915967DOI10.1016/0022-247X(87)90214-9
  26. Zhao D., 10.4153/CMB-1997-004-4, Canad. Math. Bull. 40 (1997), no. 1, 39--46. Zbl0871.06007MR1443723DOI10.4153/CMB-1997-004-4

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.