Dually residuated -monoids having no non-trivial convex subalgebras

Jan Kühr

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2006)

  • Volume: 45, Issue: 1, page 103-108
  • ISSN: 0231-9721

Abstract

top
In this note we describe the structure of dually residuated -monoids ( 𝐷𝑅 -monoids) that have no non-trivial convex subalgebras.

How to cite

top

Kühr, Jan. "Dually residuated $\ell $-monoids having no non-trivial convex subalgebras." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 45.1 (2006): 103-108. <http://eudml.org/doc/32502>.

@article{Kühr2006,
abstract = {In this note we describe the structure of dually residuated $\ell $-monoids ($\mathit \{DR\}\ell $-monoids) that have no non-trivial convex subalgebras.},
author = {Kühr, Jan},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {$\mathit \{DR\}\ell $-monoid; $\mathit \{GPMV\}$-algebra; Archimedean property; DR-monoid; GBL-algebra; GPMV-algebra; GMV-algebra; simple algebra; convex subalgebra},
language = {eng},
number = {1},
pages = {103-108},
publisher = {Palacký University Olomouc},
title = {Dually residuated $\ell $-monoids having no non-trivial convex subalgebras},
url = {http://eudml.org/doc/32502},
volume = {45},
year = {2006},
}

TY - JOUR
AU - Kühr, Jan
TI - Dually residuated $\ell $-monoids having no non-trivial convex subalgebras
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2006
PB - Palacký University Olomouc
VL - 45
IS - 1
SP - 103
EP - 108
AB - In this note we describe the structure of dually residuated $\ell $-monoids ($\mathit {DR}\ell $-monoids) that have no non-trivial convex subalgebras.
LA - eng
KW - $\mathit {DR}\ell $-monoid; $\mathit {GPMV}$-algebra; Archimedean property; DR-monoid; GBL-algebra; GPMV-algebra; GMV-algebra; simple algebra; convex subalgebra
UR - http://eudml.org/doc/32502
ER -

References

top
  1. Anderson M., Feil T.: Lattice-Ordered Groups (An Introduction)., D. Reidel, Dordrecht, , 1988. (1988) MR0937703
  2. Galatos N., Tsinakis C., Generalized MV-algebras, . J. Algebra 283 (2005), 254–291. Zbl1063.06008MR2102083
  3. Georgescu G., Leuştean L., Preoteasa V., Pseudo-hoops, . J. Mult.-Val. Log. Soft Comput. 11 (2005), 153–184. Zbl1078.06007MR2162590
  4. Glass A. M. W.: Partially Ordered Groups., World Scientific, Singapore, , 1999. (1999) MR1791008
  5. Jipsen P., Tsinakis C., A survey of residuated lattices, . In: Ordered Algebraic Structures (Martinez, J., ed.), Kluwer Acad. Publ., Dordrecht, 2002, pp. 19–56. Zbl1070.06005MR2083033
  6. Kovář T.: A General Theory of Dually Residuated Lattice Ordered Monoids., Ph.D. thesis, Palacký University, Olomouc, , 1996. (1996) 
  7. Kühr J., Ideals of noncommutative D R -monoids, Czechoslovak Math. J. 55 (2005), 97–111. MR2121658
  8. Kühr J., On a generalization of pseudo MV-algebras, J. Mult.-Val. Log. Soft Comput. (to appear). MR2288689
  9. Kühr J., Generalizations of pseudo MV-algebras and generalized pseudo effect algebras, Submitted. Zbl1174.06330
  10. Swamy K. L. N., Dually residuated lattice ordered semigroups, . Math. Ann. 159 (1965), 105–114. (1965) Zbl0138.02104MR0183797

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.