Dually residuated -monoids having no non-trivial convex subalgebras
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2006)
- Volume: 45, Issue: 1, page 103-108
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topKühr, Jan. "Dually residuated $\ell $-monoids having no non-trivial convex subalgebras." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 45.1 (2006): 103-108. <http://eudml.org/doc/32502>.
@article{Kühr2006,
abstract = {In this note we describe the structure of dually residuated $\ell $-monoids ($\mathit \{DR\}\ell $-monoids) that have no non-trivial convex subalgebras.},
author = {Kühr, Jan},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {$\mathit \{DR\}\ell $-monoid; $\mathit \{GPMV\}$-algebra; Archimedean property; DR-monoid; GBL-algebra; GPMV-algebra; GMV-algebra; simple algebra; convex subalgebra},
language = {eng},
number = {1},
pages = {103-108},
publisher = {Palacký University Olomouc},
title = {Dually residuated $\ell $-monoids having no non-trivial convex subalgebras},
url = {http://eudml.org/doc/32502},
volume = {45},
year = {2006},
}
TY - JOUR
AU - Kühr, Jan
TI - Dually residuated $\ell $-monoids having no non-trivial convex subalgebras
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2006
PB - Palacký University Olomouc
VL - 45
IS - 1
SP - 103
EP - 108
AB - In this note we describe the structure of dually residuated $\ell $-monoids ($\mathit {DR}\ell $-monoids) that have no non-trivial convex subalgebras.
LA - eng
KW - $\mathit {DR}\ell $-monoid; $\mathit {GPMV}$-algebra; Archimedean property; DR-monoid; GBL-algebra; GPMV-algebra; GMV-algebra; simple algebra; convex subalgebra
UR - http://eudml.org/doc/32502
ER -
References
top- Anderson M., Feil T.: Lattice-Ordered Groups (An Introduction)., D. Reidel, Dordrecht, , 1988. (1988) MR0937703
- Galatos N., Tsinakis C., Generalized MV-algebras, . J. Algebra 283 (2005), 254–291. Zbl1063.06008MR2102083
- Georgescu G., Leuştean L., Preoteasa V., Pseudo-hoops, . J. Mult.-Val. Log. Soft Comput. 11 (2005), 153–184. Zbl1078.06007MR2162590
- Glass A. M. W.: Partially Ordered Groups., World Scientific, Singapore, , 1999. (1999) MR1791008
- Jipsen P., Tsinakis C., A survey of residuated lattices, . In: Ordered Algebraic Structures (Martinez, J., ed.), Kluwer Acad. Publ., Dordrecht, 2002, pp. 19–56. Zbl1070.06005MR2083033
- Kovář T.: A General Theory of Dually Residuated Lattice Ordered Monoids., Ph.D. thesis, Palacký University, Olomouc, , 1996. (1996)
- Kühr J., Ideals of noncommutative -monoids, Czechoslovak Math. J. 55 (2005), 97–111. MR2121658
- Kühr J., On a generalization of pseudo MV-algebras, J. Mult.-Val. Log. Soft Comput. (to appear). MR2288689
- Kühr J., Generalizations of pseudo MV-algebras and generalized pseudo effect algebras, Submitted. Zbl1174.06330
- Swamy K. L. N., Dually residuated lattice ordered semigroups, . Math. Ann. 159 (1965), 105–114. (1965) Zbl0138.02104MR0183797
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.