Additive closure operators on abelian unital l -groups

Filip Švrček

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2006)

  • Volume: 45, Issue: 1, page 153-158
  • ISSN: 0231-9721

Abstract

top
In the paper an additive closure operator on an abelian unital l -group ( G , u ) is introduced and one studies the mutual relation of such operators and of additive closure ones on the M V -algebra Γ ( G , u ) .

How to cite

top

Švrček, Filip. "Additive closure operators on abelian unital $l$-groups." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 45.1 (2006): 153-158. <http://eudml.org/doc/32506>.

@article{Švrček2006,
abstract = {In the paper an additive closure operator on an abelian unital $l$-group $(G,u)$ is introduced and one studies the mutual relation of such operators and of additive closure ones on the $MV$-algebra $\Gamma (G,u)$.},
author = {Švrček, Filip},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {$MV$-algebra; $l$-group; MV-algebra; -group},
language = {eng},
number = {1},
pages = {153-158},
publisher = {Palacký University Olomouc},
title = {Additive closure operators on abelian unital $l$-groups},
url = {http://eudml.org/doc/32506},
volume = {45},
year = {2006},
}

TY - JOUR
AU - Švrček, Filip
TI - Additive closure operators on abelian unital $l$-groups
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2006
PB - Palacký University Olomouc
VL - 45
IS - 1
SP - 153
EP - 158
AB - In the paper an additive closure operator on an abelian unital $l$-group $(G,u)$ is introduced and one studies the mutual relation of such operators and of additive closure ones on the $MV$-algebra $\Gamma (G,u)$.
LA - eng
KW - $MV$-algebra; $l$-group; MV-algebra; -group
UR - http://eudml.org/doc/32506
ER -

References

top
  1. Chang C. C., Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88 (1958), 467–490. (1958) Zbl0084.00704MR0094302
  2. Chang C. C., A new proof of the completeness of the Lukasiewicz axioms, Trans. Amer. Math. Soc. 93 (1959), 74–80. (1959) Zbl0093.01104MR0122718
  3. Cignoli R. O. L., D’Ottaviano I. M. L., Mundici D.: Algebraic Foundations of Many-valued Reasoning., Kluwer Acad. Publ., Dordrecht–Boston–London, 2000. MR1786097
  4. Dvurečenskij A., Pulmannová S.: New Trends in Quantum Structures., Kluwer Acad. Publ., Dordrecht, 2000. MR1861369
  5. Mundici D., Interpretation of AF C * -algebras in Lukasiewicz sentential calculus, J. Funct. Analys. 65 (1986), 15–63. (1986) Zbl0597.46059MR0819173
  6. Rachůnek J., Švrček F., MV-algebras with additive closure operators, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 39 (2000), 183–189. Zbl1039.06005MR1826361

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.