Homogenization of the Maxwell equations: Case I. Linear theory
Applications of Mathematics (2001)
- Volume: 46, Issue: 1, page 29-51
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topWellander, Niklas. "Homogenization of the Maxwell equations: Case I. Linear theory." Applications of Mathematics 46.1 (2001): 29-51. <http://eudml.org/doc/32525>.
@article{Wellander2001,
abstract = {The Maxwell equations in a heterogeneous medium are studied. Nguetseng’s method of two-scale convergence is applied to homogenize and prove corrector results for the Maxwell equations with inhomogeneous initial conditions. Compactness results, of two-scale type, needed for the homogenization of the Maxwell equations are proved.},
author = {Wellander, Niklas},
journal = {Applications of Mathematics},
keywords = {Maxwell’s equations; homogenization; two-scale convergence; corrector results; heterogeneous materials; periodic coefficients; nonperiodic coefficients; compactness result; effective properties; fiber composites; homogenization; Maxwell Equations; two-scale convergence; corrector results},
language = {eng},
number = {1},
pages = {29-51},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Homogenization of the Maxwell equations: Case I. Linear theory},
url = {http://eudml.org/doc/32525},
volume = {46},
year = {2001},
}
TY - JOUR
AU - Wellander, Niklas
TI - Homogenization of the Maxwell equations: Case I. Linear theory
JO - Applications of Mathematics
PY - 2001
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 46
IS - 1
SP - 29
EP - 51
AB - The Maxwell equations in a heterogeneous medium are studied. Nguetseng’s method of two-scale convergence is applied to homogenize and prove corrector results for the Maxwell equations with inhomogeneous initial conditions. Compactness results, of two-scale type, needed for the homogenization of the Maxwell equations are proved.
LA - eng
KW - Maxwell’s equations; homogenization; two-scale convergence; corrector results; heterogeneous materials; periodic coefficients; nonperiodic coefficients; compactness result; effective properties; fiber composites; homogenization; Maxwell Equations; two-scale convergence; corrector results
UR - http://eudml.org/doc/32525
ER -
References
top- 10.1137/0523084, SIAM J. Math. Anal. 23 (1992), 1482–2518. (1992) Zbl0770.35005MR1185639DOI10.1137/0523084
- Homogenization and electromagnetic wave propagation in composite media with high conductivity inclusions, In: Proceedings of the Second Workshop Composite Media and Homogenization Theory, G. Dal Maso and G. Dell’Antonio (eds.), World Scientific Publishing Company, Singapore-New York-London, 1995. (1995)
- Un probléme raide avec homogénéisation en électromagnétisme, C. R. Acad. Sci. Paris, Sér. I Math. 310 (1990), 9–14. (1990) MR1044404
- Diffraction d’une onde électromagnetique par un obstacle borné à permittivité et perméabilité élevées, C. R. Acad. Sci. Paris, Sér. I Math. 314 (1992), 349–354. (1992) MR1153713
- Asymptotic Analysis for Periodic Structures. Studies in Mathematics and its Applications, North-Holland Publishing Company, Amsterdam-New York-Oxford, 1978. (1978) MR0503330
- Mathematical Methods in Electromagnetism. Linear Theory and Applications. Series on Advances in Mathematics for Applied Sciences, Vol 41, World Scientific Publishing Company, Singapore-New York-London, 1996. (1996) MR1409140
- Inequalities in Mechanics and Physics, Springer-Verlag, Berlin-Heidelberg-New York, 1976. (1976) MR0521262
- 10.1023/A:1023049608047, Appl. Math. 42 (1997), 321–343. (1997) Zbl0898.35008MR1467553DOI10.1023/A:1023049608047
- The concept of parabolic two-scale convergence, a new compactness result and its application to homogenization of evolution partial differential equations. Research report 1994–18, (1994), Mid-Sweden University, Östersund. (1994)
- Some Modes of Convergence and Their Application to Homogenization and Optimal Composites Design, Ph.D. thesis, Luleå University of Technology, 1996. (1996)
- The Maxwell equation in a periodic medium: Homogenization of the energy density, Ann. Sc. Norm. Sup. Pisa Cl. Sci. 23 (1996), 301–324. (1996) MR1433425
- Some problems of homogenization in quasistationary Maxwell equations, In: Applications of Multiple Scaling in Mechanics. Proc. Int. Conf., Ecole Normale Superieure, Paris 1986, Rech. Math. Appl. 4, Masson, Paris, 1987, pp. 246–258. (1987) Zbl0644.73077MR0901998
- 10.1137/0520043, SIAM J. Math. Anal. 20 (1989), 608–623. (1989) Zbl0688.35007MR0990867DOI10.1137/0520043
- Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences 44, Springer-Verlag, New York, 1983. (1983) MR0710486
- Étude de certaines équations intégrodifférentielles issues de la théorie de l’homogénéisation, Boll. Un. Mat. Ital. B 5 16 (1979), 857–875. (1979) Zbl0421.45009MR0553802
- Sur certain problémes physiques d’homogénéisation donnant lieu à des phénomènes de relaxation, C. R. Acad. Sci. Paris, Sér. A 286 (1978), 903–906. (1978) MR0509054
- Non-homogeneous Media and Vibration Theory Lecture Notes in Physics 127, Springer-Verlag, Berlin-Heidelberg-New York, 1980. (1980) MR0578345
- Classical Electromagnetic Theory, John Wiley & Sons, New York, 1993. (1993)
- 10.1111/j.1365-2478.1992.tb00378.x, Geophysical Prospecting 40 (1992), 325–341. (1992) DOI10.1111/j.1365-2478.1992.tb00378.x
- Nonlinear Functional Analysis and its Applications, Volumes IIA and IIB, Springer-Verlag, Berlin, 1990. (1990)
- Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, 1994. (1994) MR1329546
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.