Loading [MathJax]/extensions/MathZoom.js
The Maxwell equations in a heterogeneous medium are studied. Nguetseng’s method of two-scale convergence is applied to homogenize and prove corrector results for the Maxwell equations with inhomogeneous initial conditions. Compactness results, of two-scale type, needed for the homogenization of the Maxwell equations are proved.
Le système d’évolution de Nernst-Planck-Poisson-Boltzmann modélise les transferts ioniques en milieu poreux saturé en prenant en compte des interactions électrocapillaires au contact du substrat. Ce modèle présente un intérêt particulier en génie civil pour étudier la dégradation par corrosion des matériaux cimentaires, à structure micro-locale périodique, sous l’effet des ions chlorures. Les techniques d’homogénéisation sont alors un outil puissant pour élaborer un modèle macroscopique équivalent...
We define and characterize weak and strong two-scale convergence in Lp,
C0 and other spaces via a transformation of variable, extending Nguetseng's definition.
We derive several properties, including weak and strong two-scale compactness;
in particular we prove two-scale versions of theorems of
Ascoli-Arzelà, Chacon, Riesz, and Vitali.
We then approximate two-scale derivatives, and define two-scale convergence in
spaces of either weakly or strongly differentiable functions.
We also derive...
Currently displaying 1 –
3 of
3