Statistical convergence of subsequences of a given sequence

Martin Máčaj; Tibor Šalát

Mathematica Bohemica (2001)

  • Volume: 126, Issue: 1, page 191-208
  • ISSN: 0862-7959

Abstract

top
This paper is closely related to the paper of Harry I. Miller: Measure theoretical subsequence characterization of statistical convergence, Trans. Amer. Math. Soc. 347 (1995), 1811–1819 and contains a general investigation of statistical convergence of subsequences of an arbitrary sequence from the point of view of Lebesgue measure, Hausdorff dimensions and Baire’s categories.

How to cite

top

Máčaj, Martin, and Šalát, Tibor. "Statistical convergence of subsequences of a given sequence." Mathematica Bohemica 126.1 (2001): 191-208. <http://eudml.org/doc/32555>.

@article{Máčaj2001,
abstract = {This paper is closely related to the paper of Harry I. Miller: Measure theoretical subsequence characterization of statistical convergence, Trans. Amer. Math. Soc. 347 (1995), 1811–1819 and contains a general investigation of statistical convergence of subsequences of an arbitrary sequence from the point of view of Lebesgue measure, Hausdorff dimensions and Baire’s categories.},
author = {Máčaj, Martin, Šalát, Tibor},
journal = {Mathematica Bohemica},
keywords = {asymptotic density; statistical convergence; Lebesgue measure; Hausdorff dimension; Baire category; measure of weak noncompactness; nonlinear Volterra integral equation; Kneser property},
language = {eng},
number = {1},
pages = {191-208},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Statistical convergence of subsequences of a given sequence},
url = {http://eudml.org/doc/32555},
volume = {126},
year = {2001},
}

TY - JOUR
AU - Máčaj, Martin
AU - Šalát, Tibor
TI - Statistical convergence of subsequences of a given sequence
JO - Mathematica Bohemica
PY - 2001
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 126
IS - 1
SP - 191
EP - 208
AB - This paper is closely related to the paper of Harry I. Miller: Measure theoretical subsequence characterization of statistical convergence, Trans. Amer. Math. Soc. 347 (1995), 1811–1819 and contains a general investigation of statistical convergence of subsequences of an arbitrary sequence from the point of view of Lebesgue measure, Hausdorff dimensions and Baire’s categories.
LA - eng
KW - asymptotic density; statistical convergence; Lebesgue measure; Hausdorff dimension; Baire category; measure of weak noncompactness; nonlinear Volterra integral equation; Kneser property
UR - http://eudml.org/doc/32555
ER -

References

top
  1. 10.1090/S0002-9904-1943-08061-5, Bull. Amer. Math. Soc 49 (1943), 924–931. (1943) MR0009209DOI10.1090/S0002-9904-1943-08061-5
  2. Statistical convergence and statistical continuity, Zborník vedeckých prác MtF STU 6 (1998), 207–212. (1998) 
  3. 10.1524/anly.1988.8.12.47, Analysis 8 (1988), 47–63. (1988) Zbl0653.40001MR0954458DOI10.1524/anly.1988.8.12.47
  4. 10.4153/CMB-1989-029-3, Canad. Math. Bull. 32 (1989), 194–198. (1989) Zbl0693.40007MR1006746DOI10.4153/CMB-1989-029-3
  5. 10.1524/anly.1990.10.4.373, Analysis 10 (1990), 373–385. (1990) Zbl0726.40009MR1085803DOI10.1524/anly.1990.10.4.373
  6. R -type summability methods, Cauchy criteria, P -sets and statistical convergence, Proc. Amer. Math. Soc. 115 (1992), 319–327. (1992) Zbl0765.40002MR1095221
  7. 10.1006/jmaa.1996.0027, J. Math. Anal. Appl. 197 (1996), 392–399. (1996) MR1372186DOI10.1006/jmaa.1996.0027
  8. Infinite Matrices and Sequence Spaces, Moskva, 1950. (Russian) (1950) Zbl0040.02501MR0040451
  9. 10.4064/cm-2-3-4-241-244, Coll. Math. 2 (1951), 241–244. (1951) Zbl0044.33605MR0048548DOI10.4064/cm-2-3-4-241-244
  10. Densities and summability, Pac. J. Math. 95 (1981), 293–305. (1981) MR0632187
  11. 10.1524/anly.1985.5.4.301, Analysis 5 (1985), 301–313. (1985) Zbl0588.40001MR0816582DOI10.1524/anly.1985.5.4.301
  12. 10.1090/S0002-9939-1993-1181163-6, Proc. Amer. Math. Soc. 118 (1993), 1187–1192. (1993) Zbl0776.40001MR1181163DOI10.1090/S0002-9939-1993-1181163-6
  13. A matrix characterization of statistical convergence, Analysis 11 (1991), 59–66. (1991) MR1113068
  14. Sequences I, Oxford, 1966. (1966) 
  15. On statistical limit points, (to appear). (to appear) MR1838788
  16. 10.1090/S0002-9947-1995-1260176-6, Trans. Amer. Math. Soc. 347 (1995), 1811–1819. (1995) Zbl0830.40002MR1260176DOI10.1090/S0002-9947-1995-1260176-6
  17. Additive Zahlentheorie I, Springer-Verlag, Berlin, 1956. (1956) Zbl0072.03101MR0098721
  18. On Hausdorff measure of linear sets, Czechoslovak Math. J. 11 (1961), 24–56. (Russian) (1961) MR0153802
  19. Eine metrische Eigenschaft der Cantorschen Etwicklungen der reellen Zahlen und Irrationalitätskriterien, Czechoslovak Math. J. 14 (1964), 254–266. (1964) MR0168527
  20. Über die Cantorsche Reihen, Czechoslovak Math. J. 18 (1968), 25–56. (1968) 
  21. On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), 139–150. (1980) MR0587239
  22. 10.1080/00029890.1959.11989303, Amer. Math. Monthly 66 (1959), 361–375. (1959) Zbl0089.04002MR0104946DOI10.1080/00029890.1959.11989303
  23. Funkcje rzeczywiste I (Real Functions), PWN, Warszawa, 1958. (Polish) (1958) MR0091312
  24. 10.1007/BF01585915, Monatsh. Math. 120 (1995), 153–164. (1995) Zbl0835.11029MR1348367DOI10.1007/BF01585915
  25. 10.4064/sm-7-1-143-149, Studia Math. 7 (1938), 143–159. (1938) Zbl0019.22501DOI10.4064/sm-7-1-143-149

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.