Statistical convergence of subsequences of a given sequence
Mathematica Bohemica (2001)
- Volume: 126, Issue: 1, page 191-208
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topMáčaj, Martin, and Šalát, Tibor. "Statistical convergence of subsequences of a given sequence." Mathematica Bohemica 126.1 (2001): 191-208. <http://eudml.org/doc/32555>.
@article{Máčaj2001,
abstract = {This paper is closely related to the paper of Harry I. Miller: Measure theoretical subsequence characterization of statistical convergence, Trans. Amer. Math. Soc. 347 (1995), 1811–1819 and contains a general investigation of statistical convergence of subsequences of an arbitrary sequence from the point of view of Lebesgue measure, Hausdorff dimensions and Baire’s categories.},
author = {Máčaj, Martin, Šalát, Tibor},
journal = {Mathematica Bohemica},
keywords = {asymptotic density; statistical convergence; Lebesgue measure; Hausdorff dimension; Baire category; measure of weak noncompactness; nonlinear Volterra integral equation; Kneser property},
language = {eng},
number = {1},
pages = {191-208},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Statistical convergence of subsequences of a given sequence},
url = {http://eudml.org/doc/32555},
volume = {126},
year = {2001},
}
TY - JOUR
AU - Máčaj, Martin
AU - Šalát, Tibor
TI - Statistical convergence of subsequences of a given sequence
JO - Mathematica Bohemica
PY - 2001
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 126
IS - 1
SP - 191
EP - 208
AB - This paper is closely related to the paper of Harry I. Miller: Measure theoretical subsequence characterization of statistical convergence, Trans. Amer. Math. Soc. 347 (1995), 1811–1819 and contains a general investigation of statistical convergence of subsequences of an arbitrary sequence from the point of view of Lebesgue measure, Hausdorff dimensions and Baire’s categories.
LA - eng
KW - asymptotic density; statistical convergence; Lebesgue measure; Hausdorff dimension; Baire category; measure of weak noncompactness; nonlinear Volterra integral equation; Kneser property
UR - http://eudml.org/doc/32555
ER -
References
top- 10.1090/S0002-9904-1943-08061-5, Bull. Amer. Math. Soc 49 (1943), 924–931. (1943) MR0009209DOI10.1090/S0002-9904-1943-08061-5
- Statistical convergence and statistical continuity, Zborník vedeckých prác MtF STU 6 (1998), 207–212. (1998)
- 10.1524/anly.1988.8.12.47, Analysis 8 (1988), 47–63. (1988) Zbl0653.40001MR0954458DOI10.1524/anly.1988.8.12.47
- 10.4153/CMB-1989-029-3, Canad. Math. Bull. 32 (1989), 194–198. (1989) Zbl0693.40007MR1006746DOI10.4153/CMB-1989-029-3
- 10.1524/anly.1990.10.4.373, Analysis 10 (1990), 373–385. (1990) Zbl0726.40009MR1085803DOI10.1524/anly.1990.10.4.373
- -type summability methods, Cauchy criteria, -sets and statistical convergence, Proc. Amer. Math. Soc. 115 (1992), 319–327. (1992) Zbl0765.40002MR1095221
- 10.1006/jmaa.1996.0027, J. Math. Anal. Appl. 197 (1996), 392–399. (1996) MR1372186DOI10.1006/jmaa.1996.0027
- Infinite Matrices and Sequence Spaces, Moskva, 1950. (Russian) (1950) Zbl0040.02501MR0040451
- 10.4064/cm-2-3-4-241-244, Coll. Math. 2 (1951), 241–244. (1951) Zbl0044.33605MR0048548DOI10.4064/cm-2-3-4-241-244
- Densities and summability, Pac. J. Math. 95 (1981), 293–305. (1981) MR0632187
- 10.1524/anly.1985.5.4.301, Analysis 5 (1985), 301–313. (1985) Zbl0588.40001MR0816582DOI10.1524/anly.1985.5.4.301
- 10.1090/S0002-9939-1993-1181163-6, Proc. Amer. Math. Soc. 118 (1993), 1187–1192. (1993) Zbl0776.40001MR1181163DOI10.1090/S0002-9939-1993-1181163-6
- A matrix characterization of statistical convergence, Analysis 11 (1991), 59–66. (1991) MR1113068
- Sequences I, Oxford, 1966. (1966)
- On statistical limit points, (to appear). (to appear) MR1838788
- 10.1090/S0002-9947-1995-1260176-6, Trans. Amer. Math. Soc. 347 (1995), 1811–1819. (1995) Zbl0830.40002MR1260176DOI10.1090/S0002-9947-1995-1260176-6
- Additive Zahlentheorie I, Springer-Verlag, Berlin, 1956. (1956) Zbl0072.03101MR0098721
- On Hausdorff measure of linear sets, Czechoslovak Math. J. 11 (1961), 24–56. (Russian) (1961) MR0153802
- Eine metrische Eigenschaft der Cantorschen Etwicklungen der reellen Zahlen und Irrationalitätskriterien, Czechoslovak Math. J. 14 (1964), 254–266. (1964) MR0168527
- Über die Cantorsche Reihen, Czechoslovak Math. J. 18 (1968), 25–56. (1968)
- On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), 139–150. (1980) MR0587239
- 10.1080/00029890.1959.11989303, Amer. Math. Monthly 66 (1959), 361–375. (1959) Zbl0089.04002MR0104946DOI10.1080/00029890.1959.11989303
- Funkcje rzeczywiste I (Real Functions), PWN, Warszawa, 1958. (Polish) (1958) MR0091312
- 10.1007/BF01585915, Monatsh. Math. 120 (1995), 153–164. (1995) Zbl0835.11029MR1348367DOI10.1007/BF01585915
- 10.4064/sm-7-1-143-149, Studia Math. 7 (1938), 143–159. (1938) Zbl0019.22501DOI10.4064/sm-7-1-143-149
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.