On the solvability of some multi-point boundary value problems

Chaitan P. Gupta; Sotiris K. Ntouyas; Panagiotis Ch. Tsamatos

Applications of Mathematics (1996)

  • Volume: 41, Issue: 1, page 1-17
  • ISSN: 0862-7940

Abstract

top
Let f : [ 0 , 1 ] × 2 be a function satisfying Caratheodory’s conditions and let e ( t ) L 1 [ 0 , 1 ] . Let ξ i , τ j ( 0 , 1 ) , c i , a j , all of the c i ’s, (respectively, a j ’s) having the same sign, i = 1 , 2 , ... , m - 2 , j = 1 , 2 , ... , n - 2 , 0 < ξ 1 < ξ 2 < ... < ξ m - 2 < 1 , 0 < τ 1 < τ 2 < ... < τ n - 2 < 1 be given. This paper is concerned with the problem of existence of a solution for the multi-point boundary value problems x ' ' ( t ) = f ( t , x ( t ) , x ' ( t ) ) + e ( t ) , t ( 0 , 1 ) E x ( 0 ) = i = 1 m - 2 c i x ' ( ξ i ) , x ( 1 ) = j = 1 n - 2 a j x ( τ j ) B C m n and x ' ' ( t ) = f ( t , x ( t ) , x ' ( t ) ) + e ( t ) , t ( 0 , 1 ) E x ( 0 ) = i = 1 m - 2 c i x ' ( ξ i ) , x ' ( 1 ) = j = 1 n - 2 a j x ' ( τ j ) , B C m n ' Conditions for the existence of a solution for the above boundary value problems are given using Leray-Schauder Continuation theorem.

How to cite

top

Gupta, Chaitan P., Ntouyas, Sotiris K., and Tsamatos, Panagiotis Ch.. "On the solvability of some multi-point boundary value problems." Applications of Mathematics 41.1 (1996): 1-17. <http://eudml.org/doc/32934>.

@article{Gupta1996,
abstract = {Let $f\colon [0,1]\times \mathbb \{R\}^\{2\} \rightarrow \mathbb \{R\}$ be a function satisfying Caratheodory’s conditions and let $e(t)\in L^\{1\}[0,1]$. Let $\xi _\{i\}, \tau _\{j\}\in (0,1)$, $ c_\{i\},a_\{j\}\in \mathbb \{R\}$, all of the $c_\{i\}$’s, (respectively, $a_\{j\}$’s) having the same sign, $i=1,2,\ldots ,m-2$, $j=1,2,\ldots ,n-2$, $0 < \xi _\{1\}<\xi _\{2\}<\ldots <\xi _\{m-2\}<1$, $0 < \tau _\{1\}<\tau _\{2\}<\ldots <\tau _\{n-2\}<1$ be given. This paper is concerned with the problem of existence of a solution for the multi-point boundary value problems \begin\{align*\} x^\{\prime \prime \}(t)=f(t, x(t),x^\{\prime \}(t))+e(t),\qquad t\in (0,1)E \\ x(0)=\sum \limits \_\{i=1\}^\{m-2\} c\_\{i\}x^\{\prime \}(\xi \_\{i\}),\qquad x(1)=\sum \limits \_\{j=1\}^\{n-2\} a\_\{j\}x(\tau \_\{j\}) BC\_\{mn\}\end\{align*\} and \begin\{align*\} x^\{\prime \prime \}(t)=f(t, x(t),x^\{\prime \}(t))+e(t),\qquad t\in (0,1)E\\ x(0)=\sum \limits \_\{i=1\}^\{m-2\} c\_\{i\}x^\{\prime \}(\xi \_\{i\}),\qquad x^\{\prime \}(1)=\sum \limits \_\{j=1\}^\{n-2\} a\_\{j\}x^\{\prime \}(\tau \_\{j\}), BC\_\{mn\}^\{\prime \} \end\{align*\} Conditions for the existence of a solution for the above boundary value problems are given using Leray-Schauder Continuation theorem.},
author = {Gupta, Chaitan P., Ntouyas, Sotiris K., Tsamatos, Panagiotis Ch.},
journal = {Applications of Mathematics},
keywords = {multi-point boundary value problems; four point boundary value problems; Leray-Schauder Continuation theorem; a priori bounds; multipoint boundary value problem; Leray-Schauder continuation theorem},
language = {eng},
number = {1},
pages = {1-17},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the solvability of some multi-point boundary value problems},
url = {http://eudml.org/doc/32934},
volume = {41},
year = {1996},
}

TY - JOUR
AU - Gupta, Chaitan P.
AU - Ntouyas, Sotiris K.
AU - Tsamatos, Panagiotis Ch.
TI - On the solvability of some multi-point boundary value problems
JO - Applications of Mathematics
PY - 1996
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 41
IS - 1
SP - 1
EP - 17
AB - Let $f\colon [0,1]\times \mathbb {R}^{2} \rightarrow \mathbb {R}$ be a function satisfying Caratheodory’s conditions and let $e(t)\in L^{1}[0,1]$. Let $\xi _{i}, \tau _{j}\in (0,1)$, $ c_{i},a_{j}\in \mathbb {R}$, all of the $c_{i}$’s, (respectively, $a_{j}$’s) having the same sign, $i=1,2,\ldots ,m-2$, $j=1,2,\ldots ,n-2$, $0 < \xi _{1}<\xi _{2}<\ldots <\xi _{m-2}<1$, $0 < \tau _{1}<\tau _{2}<\ldots <\tau _{n-2}<1$ be given. This paper is concerned with the problem of existence of a solution for the multi-point boundary value problems \begin{align*} x^{\prime \prime }(t)=f(t, x(t),x^{\prime }(t))+e(t),\qquad t\in (0,1)E \\ x(0)=\sum \limits _{i=1}^{m-2} c_{i}x^{\prime }(\xi _{i}),\qquad x(1)=\sum \limits _{j=1}^{n-2} a_{j}x(\tau _{j}) BC_{mn}\end{align*} and \begin{align*} x^{\prime \prime }(t)=f(t, x(t),x^{\prime }(t))+e(t),\qquad t\in (0,1)E\\ x(0)=\sum \limits _{i=1}^{m-2} c_{i}x^{\prime }(\xi _{i}),\qquad x^{\prime }(1)=\sum \limits _{j=1}^{n-2} a_{j}x^{\prime }(\tau _{j}), BC_{mn}^{\prime } \end{align*} Conditions for the existence of a solution for the above boundary value problems are given using Leray-Schauder Continuation theorem.
LA - eng
KW - multi-point boundary value problems; four point boundary value problems; Leray-Schauder Continuation theorem; a priori bounds; multipoint boundary value problem; Leray-Schauder continuation theorem
UR - http://eudml.org/doc/32934
ER -

References

top
  1. 10.1016/0022-247X(92)90179-H, Jour. Math. Anal. Appl. 168 (1992), 540–551. (1992) MR1176010DOI10.1016/0022-247X(92)90179-H
  2. 10.1006/jmaa.1994.1299, Jour. Math. Anal. Appl. 186 (1994), 277–281. (1994) Zbl0805.34017MR1290657DOI10.1006/jmaa.1994.1299
  3. 10.1016/0362-546X(94)90137-6, Nonlinear Analysis 23 (1994), 1427–1436. (1994) MR1306681DOI10.1016/0362-546X(94)90137-6
  4. Existence results for m -point boundary value problems, Differential Equations and Dynamical Systems 2 (1994), 289–298. (1994) MR1386275
  5. Nonlocal boundary value problem of the first kind for a Sturm-Liouville operator in its differential and finite difference aspects, Differential Equations 23 (1987), 803–810. (1987) 
  6. Nonlocal boundary value problem of the second kind for a Sturm-Liouville operator, Differential Equations 23 (1987), 979–987. (1987) 
  7. 10.1006/jmaa.1994.1158, Jour. Math. Anal. Appl. 183 (1994), 518–522. (1994) Zbl0801.34025MR1274852DOI10.1006/jmaa.1994.1158
  8. Topological degree methods in nonlinear boundary value problems, “NSF-CBMS Regional Conference Series in Math.” No. 40, Amer. Math. Soc., Providence, RI, 1979. (1979) Zbl0414.34025MR0525202

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.