A priori estimates and solvability of a non-resonant generalized multi-point boundary value problem of mixed Dirichlet-Neumann-Dirichlet type involving a -Laplacian type operator
Applications of Mathematics (2007)
- Volume: 52, Issue: 5, page 417-430
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topGupta, Chaitan P.. "A priori estimates and solvability of a non-resonant generalized multi-point boundary value problem of mixed Dirichlet-Neumann-Dirichlet type involving a $p$-Laplacian type operator." Applications of Mathematics 52.5 (2007): 417-430. <http://eudml.org/doc/33299>.
@article{Gupta2007,
abstract = {This paper is devoted to the problem of existence of a solution for a non-resonant, non-linear generalized multi-point boundary value problem on the interval $[0,1]$. The existence of a solution is obtained using topological degree and some a priori estimates for functions satisfying the boundary conditions specified in the problem.},
author = {Gupta, Chaitan P.},
journal = {Applications of Mathematics},
keywords = {generalized multi-point boundary value problems; $p$-Laplace type operator; non-resonance; a priori estimates; topological degree; generalized multi-point boundary value problems; -Laplace type operator},
language = {eng},
number = {5},
pages = {417-430},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A priori estimates and solvability of a non-resonant generalized multi-point boundary value problem of mixed Dirichlet-Neumann-Dirichlet type involving a $p$-Laplacian type operator},
url = {http://eudml.org/doc/33299},
volume = {52},
year = {2007},
}
TY - JOUR
AU - Gupta, Chaitan P.
TI - A priori estimates and solvability of a non-resonant generalized multi-point boundary value problem of mixed Dirichlet-Neumann-Dirichlet type involving a $p$-Laplacian type operator
JO - Applications of Mathematics
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 52
IS - 5
SP - 417
EP - 430
AB - This paper is devoted to the problem of existence of a solution for a non-resonant, non-linear generalized multi-point boundary value problem on the interval $[0,1]$. The existence of a solution is obtained using topological degree and some a priori estimates for functions satisfying the boundary conditions specified in the problem.
LA - eng
KW - generalized multi-point boundary value problems; $p$-Laplace type operator; non-resonance; a priori estimates; topological degree; generalized multi-point boundary value problems; -Laplace type operator
UR - http://eudml.org/doc/33299
ER -
References
top- 10.1016/S0096-3003(02)00227-8, Appl. Math. Comput. 140 (2003), 297–305. (2003) MR1953901DOI10.1016/S0096-3003(02)00227-8
- On the theory of nonlocal boundary value problems, Sov. Math. Dokl. 30 (1984), 8–10. (1984) Zbl0586.30036MR0757061
- On a class of conditionally solvable nonlocal boundary value problems for harmonic functions, Sov. Math. Dokl. 31 (1985), 91–94. (1985) Zbl0607.30039
- On some simple generalizations of linear elliptic boundary problems, Sov. Math. Dokl. 10 (1969), 398–400. (1969)
- 10.1016/S0362-546X(96)00118-6, Nonlinear Anal., Theory Methods Appl. 30 (1997), 3227–3238. (1997) MR1603039DOI10.1016/S0362-546X(96)00118-6
- 10.1006/jmaa.1997.5520, J. Math. Anal. Appl. 212 (1997), 467–480. (1997) MR1464891DOI10.1006/jmaa.1997.5520
- 10.1155/S1085337501000550, Abstr. Appl. Anal. 6 (2001), 191–213. (2001) MR1866004DOI10.1155/S1085337501000550
- An -point boundary value problem of Neumann type for a -Laplacian like operator, Nonlinear Anal., Theory Methods Appl. 56A (2004), 1071–1089. (2004) MR2038737
- 10.1016/j.na.2005.04.020, Nonlinear Anal., Theory Methods Appl. 62 (2005), 1067–1089. (2005) MR2152998DOI10.1016/j.na.2005.04.020
- A three point boundary value problem containing the operator , Discrete Contin. Dyn. Syst. Suppl. (2003), 313–319. (2003) MR2018130
- 10.1016/0022-247X(92)90179-H, J. Math. Anal. Appl. 168 (1992), 540–551. (1992) Zbl0763.34009MR1176010DOI10.1016/0022-247X(92)90179-H
- 10.1006/jmaa.1994.1299, J. Math. Anal. Appl. 186 (1994), 277–281. (1994) Zbl0805.34017MR1290657DOI10.1006/jmaa.1994.1299
- 10.1016/0362-546X(94)00204-U, Nonlinear Anal., Theory Methods Appl. 24 (1995), 1483–1489. (1995) Zbl0839.34027MR1327929DOI10.1016/0362-546X(94)00204-U
- 10.1155/S0161171295000901, Int. J. Math. Math. Sci. 18 (1995), 705–710. (1995) Zbl0839.34027MR1347059DOI10.1155/S0161171295000901
- 10.1007/BF03322257, Result. Math. 28 (1995), 270–276. (1995) Zbl0843.34023MR1356893DOI10.1007/BF03322257
- 10.1016/S0096-3003(97)81653-0, Appl. Math. Comput. 89 (1998), 133–146. (1998) Zbl0910.34032MR1491699DOI10.1016/S0096-3003(97)81653-0
- 10.1016/0362-546X(94)90137-6, Nonlinear Anal., Theory Methods Appl. 23 (1994), 1427–1436. (1994) MR1306681DOI10.1016/0362-546X(94)90137-6
- 10.1006/jmaa.1995.1036, J. Math. Anal. Appl. 189 (1995), 575–584. (1995) MR1312062DOI10.1006/jmaa.1995.1036
- Existence results for -point boundary value problems, Differ. Equ. Dyn. Syst. 2 (1994), 289–298. (1994) MR1386275
- On the solvability of some multi-point boundary value problems, Appl. Math. 41 (1996), 1–17. (1996) MR1365136
- Existence results for multi-point boundary value problems for second order ordinary differential equations, Bull. Greek Math. Soc. 43 (2000), 105–123. (2000) MR1846952
- 10.1155/S1085337599000093, Abstr. Appl. Anal. 4 (1999), 71–81. (1999) MR1810319DOI10.1155/S1085337599000093
- Nonlocal boundary value problem of the first kind for a Sturm-Liouville operator in its differential and difference aspects, Differ. Equ. 23 (1987), 803–810. (1987)
- Nonlocal boundary value problem of the second kind for a Sturm-Liouville operator, Differ. Equ. 23 (1987), 979–987. (1987)
- 10.1016/S0096-3003(02)00361-2, Appl. Math. Comput. 143 (2003), 275–299. (2003) Zbl1071.34014MR1981696DOI10.1016/S0096-3003(02)00361-2
- 10.1016/S0022-247X(02)00557-7, J. Math. Anal. Appl. 277 (2003), 293–302. (2003) Zbl1026.34028MR1954477DOI10.1016/S0022-247X(02)00557-7
- Degree Theory, Cambridge University Press, Cambridge, 1978. (1978) Zbl0367.47001MR0493564
- Topological degree methods in nonlinear boundary value problems, In: NSF-CBMS Regional Conference Series in Math. No. 40, Americal Mathematical Society, Providence, 1979. (1979) Zbl0414.34025MR0525202
- 10.1515/ans-2004-0409, Adv. Nonlinear Stud. 4 (2004), 501–514. (2004) Zbl1082.47052MR2100911DOI10.1515/ans-2004-0409
- 10.1006/jmaa.1999.6441, J. Math. Anal. Appl. 236 (1999), 384–398. (1999) MR1704590DOI10.1006/jmaa.1999.6441
- 10.1016/S0895-7177(01)00063-2, Math. Comput. Modelling 34 (2001), 311–318. (2001) MR1835829DOI10.1016/S0895-7177(01)00063-2
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.