A note on bounds for non-linear multivalued homogenized operators

Nils Svanstedt

Applications of Mathematics (1998)

  • Volume: 43, Issue: 2, page 81-92
  • ISSN: 0862-7940

Abstract

top
In this paper we study the behaviour of maximal monotone multivalued highly oscillatory operators. We construct Reuss-Voigt-Wiener and Hashin-Shtrikmann type bounds for the minimal sections of G-limits of multivalued operators by using variational convergence and convex analysis.

How to cite

top

Svanstedt, Nils. "A note on bounds for non-linear multivalued homogenized operators." Applications of Mathematics 43.2 (1998): 81-92. <http://eudml.org/doc/32998>.

@article{Svanstedt1998,
abstract = {In this paper we study the behaviour of maximal monotone multivalued highly oscillatory operators. We construct Reuss-Voigt-Wiener and Hashin-Shtrikmann type bounds for the minimal sections of G-limits of multivalued operators by using variational convergence and convex analysis.},
author = {Svanstedt, Nils},
journal = {Applications of Mathematics},
keywords = {multivalued operators; highly oscillatory operators; Reuss-Voigt-Wiener bounds; Hashin-Shtrikman bounds; multivalued operators; maximal monotone operators; homogenization; Reuss-Voigt-Wiener bounds; Hashin-Shtrikman bounds},
language = {eng},
number = {2},
pages = {81-92},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A note on bounds for non-linear multivalued homogenized operators},
url = {http://eudml.org/doc/32998},
volume = {43},
year = {1998},
}

TY - JOUR
AU - Svanstedt, Nils
TI - A note on bounds for non-linear multivalued homogenized operators
JO - Applications of Mathematics
PY - 1998
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 43
IS - 2
SP - 81
EP - 92
AB - In this paper we study the behaviour of maximal monotone multivalued highly oscillatory operators. We construct Reuss-Voigt-Wiener and Hashin-Shtrikmann type bounds for the minimal sections of G-limits of multivalued operators by using variational convergence and convex analysis.
LA - eng
KW - multivalued operators; highly oscillatory operators; Reuss-Voigt-Wiener bounds; Hashin-Shtrikman bounds; multivalued operators; maximal monotone operators; homogenization; Reuss-Voigt-Wiener bounds; Hashin-Shtrikman bounds
UR - http://eudml.org/doc/32998
ER -

References

top
  1. 10.1090/qam/1247433, Q. Appl. Math. 51 (1993), 643–674. (1993) MR1247433DOI10.1090/qam/1247433
  2. Variational Convergence for Functions and Operators, Pitman Publ., 1984. (1984) Zbl0561.49012MR0773850
  3. 10.1137/0147082, SIAM J. Appl. Math. 47 (1987), 1216–1228. (1987) Zbl0632.73079MR0916238DOI10.1137/0147082
  4. 10.1016/S0294-1449(16)30298-0, Ann. Inst. H. Poincaré, Anal. Non Lineare 7 (1990), 123–160. (1990) MR1065871DOI10.1016/S0294-1449(16)30298-0
  5. 10.1016/0362-546X(90)90102-M, Nonlinear Anal. 14, 717–732. MR1049117DOI10.1016/0362-546X(90)90102-M
  6. An introduction to Γ -convergence, Birkhäuser Boston, 1993. (1993) Zbl0816.49001MR1201152
  7. 10.3233/ASY-1989-2103, Asymptotic Anal. 1 (1989), 21–37. (1989) Zbl0681.47023MR0991415DOI10.3233/ASY-1989-2103
  8. 10.1007/BF00280908, Arch. Rat. Mech. Anal. 94 (1986), 307–334. (1986) MR0846892DOI10.1007/BF00280908
  9. 10.1007/BF01216179, Comm. Math. Phys. (1983), 473–491. (1983) MR0719428DOI10.1007/BF01216179
  10. 10.1115/1.3167081, J. Appl. Mech. 50 (1983), 483–505. (1983) Zbl0542.73092DOI10.1115/1.3167081
  11. 10.1016/0022-5096(62)90005-4, J. Mech. Phys. Solids. 10 (1962), 343–352. (1962) MR0147032DOI10.1016/0022-5096(62)90005-4
  12. 10.1016/0022-5096(63)90060-7, J. Mech. Phys. Solids. 11 (1963), 127–140. (1963) MR0159459DOI10.1016/0022-5096(63)90060-7
  13. 10.1016/0022-5096(63)90036-X, J. Mech. Phys. Solids 11 (1963), 357–372. (1963) Zbl0114.15804DOI10.1016/0022-5096(63)90036-X
  14. 10.1007/BF00251534, Arch. Rat. Mech. Anal. 102 (1988), 331–350. (1988) MR0946964DOI10.1007/BF00251534
  15. 10.1080/00036819508840366, Applicable Analysis 58 (1995), 123–135. (1995) MR1384593DOI10.1080/00036819508840366
  16. Exact estimates of the conductivity of composites formed by two isotropically conducting media taken in prescribed proportion, Proc. Roy. Soc. Edinburgh 99A (1984), 71–87. (1984) MR0781086
  17. 10.1002/cpa.3160430104, Comm. Pure Appl. Math. 43 (1990), 63–125. (1990) Zbl0751.73041MR1024190DOI10.1002/cpa.3160430104
  18. 10.1016/0022-5096(91)90030-R, J. Mech. Phys. Solids 39 (1991), 45–71. (1991) Zbl0734.73052MR1085622DOI10.1016/0022-5096(91)90030-R
  19. 10.1016/0022-5096(92)90050-C, J. Mech. Phys. Solids 40 (1992), 1757–1788. (1992) Zbl0764.73103MR1190849DOI10.1016/0022-5096(92)90050-C
  20. Plasticite et homogeneisation, These, Paris VI (1982). (1982) 
  21. 10.1016/0022-5096(93)90051-G, J. Mech. Phys Solids 41 (1993), 981–1002. (1993) Zbl0773.73063MR1220788DOI10.1016/0022-5096(93)90051-G
  22. Bounds for homogenized constitutive laws in non-linear elasticity and plasticity (in preparation), . 
  23. Some simple explicit bounds for the overall behaviour of nonlinear composites, Int. J. Solids Struct. 29 (1992), 1981–1987. (1992) MR1173106
  24. Upper and lower bound for the overall properties of a nonlinear composite dielectric I. Random microgeometry, Proc. Royal Soc. London A 447 (1994) (to appear), 365–384. (ARRAY(0x946bc50)) 
  25. Estimations fines des coefficients homogenises, Ennio De Giorgi Colloquium, P. Kree (ed.), Pitman Publ., London, 1985, pp. 168–187. (1985) MR0909716
  26. H-measures, a new approach for studying homogenization, oscillations and concentration effects in partial differential equations, Proc. Roy. Soc. Edinburgh 115A (1990), 193–230. (1990) MR1069518
  27. 10.1115/1.3119494, Appl. Mech. Rev. 44 (1991), 37–76. (1991) MR1092035DOI10.1115/1.3119494
  28. 10.1016/0022-5096(66)90035-4, J. Mech. Phys. Solids 14 (1966), 151–162. (1966) DOI10.1016/0022-5096(66)90035-4
  29. 10.1016/S0065-2156(08)70330-2, Advances in Applied Mechanics 21 (1981), 1–78. (1981) Zbl0476.73053MR0706965DOI10.1016/S0065-2156(08)70330-2
  30. 10.1115/1.3167202, J. Appl. Mech. 50 (1983), 1202–1209. (1983) Zbl0539.73003DOI10.1115/1.3167202
  31. 10.1093/imamat/43.3.231, IMA J. appl. Math. 43 (1989), 231–242. (1989) Zbl0695.73005MR1042634DOI10.1093/imamat/43.3.231
  32. Nonlinear Functional Analysis and its Applications, Volume III, Springer-Verlag, 1990. (1990) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.