Epsilon-inflation with contractive interval functions

Günter Mayer

Applications of Mathematics (1998)

  • Volume: 43, Issue: 4, page 241-254
  • ISSN: 0862-7940

Abstract

top
For contractive interval functions [ g ] we show that [ g ] ( [ x ] ϵ k 0 ) ( [ x ] ϵ k 0 ) results from the iterative process [ x ] k + 1 : = [ g ] ( [ x ] ϵ k ) after finitely many iterations if one uses the epsilon-inflated vector [ x ] ϵ k as input for [ g ] instead of the original output vector [ x ] k . Applying Brouwer’s fixed point theorem, zeros of various mathematical problems can be verified in this way.

How to cite

top

Mayer, Günter. "Epsilon-inflation with contractive interval functions." Applications of Mathematics 43.4 (1998): 241-254. <http://eudml.org/doc/33010>.

@article{Mayer1998,
abstract = {For contractive interval functions $ [g] $ we show that $ [g]([x]^\{k_0\}_\epsilon ) \subseteq \int ([x]^\{k_0\}_\epsilon ) $ results from the iterative process $ [x]^\{k+1\} := [g]([x]^k_\epsilon ) $ after finitely many iterations if one uses the epsilon-inflated vector $ [x]^k_\epsilon $ as input for $ [g] $ instead of the original output vector $ [x]^k $. Applying Brouwer’s fixed point theorem, zeros of various mathematical problems can be verified in this way.},
author = {Mayer, Günter},
journal = {Applications of Mathematics},
keywords = {epsilon-inflation; P-contraction; contraction; verification algorithms; interval computation; nonlinear equations; eigenvalues; singular values; P-contraction; interval computation; nonlinear equations},
language = {eng},
number = {4},
pages = {241-254},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Epsilon-inflation with contractive interval functions},
url = {http://eudml.org/doc/33010},
volume = {43},
year = {1998},
}

TY - JOUR
AU - Mayer, Günter
TI - Epsilon-inflation with contractive interval functions
JO - Applications of Mathematics
PY - 1998
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 43
IS - 4
SP - 241
EP - 254
AB - For contractive interval functions $ [g] $ we show that $ [g]([x]^{k_0}_\epsilon ) \subseteq \int ([x]^{k_0}_\epsilon ) $ results from the iterative process $ [x]^{k+1} := [g]([x]^k_\epsilon ) $ after finitely many iterations if one uses the epsilon-inflated vector $ [x]^k_\epsilon $ as input for $ [g] $ instead of the original output vector $ [x]^k $. Applying Brouwer’s fixed point theorem, zeros of various mathematical problems can be verified in this way.
LA - eng
KW - epsilon-inflation; P-contraction; contraction; verification algorithms; interval computation; nonlinear equations; eigenvalues; singular values; P-contraction; interval computation; nonlinear equations
UR - http://eudml.org/doc/33010
ER -

References

top
  1. Rigorous Error Bounds for Singular Values of a Matrix Using the Precise Scalar Product, Computerarithmetic, E. Kaucher, U. Kulisch and Ch. Ullrich (eds.), Teubner, Stuttgart, 1987, pp. 9–30. (1987) MR0904306
  2. Introduction to Interval Computations, Academic Press, New York, 1983. (1983) MR0733988
  3. 10.1007/BF02240207, Computing 36 (1986), 321–334. (1986) MR0843941DOI10.1007/BF02240207
  4. 10.1007/BF01947742, BIT 18 (1978), 42–51. (1978) MR0478583DOI10.1007/BF01947742
  5. Solving the Complex Algebraic Eigenvalue Problem with Verified High Accuracy, Accurate Numerical Algorithms, A Collection of Research Papers, Research Reports ESPRIT, Project 1072, DIAMOND, Vol. 1, Ch. Ullrich and J. Wolff von Gudenberg (eds.), Springer, Berlin, 1989, pp. 59–78. (1989) 
  6. On the Inflation Parameter Used in Self-Validating Methods, Contributions to Computer Arithmetic and Self-Validating Numerical Methods, Ch. Ullrich (ed.), Baltzer, IMACS, Basel, 1990, pp. 127–132. (1990) MR1131093
  7. Result Verification for Eigenvectors and Eigenvalues, Topics in Validated Computations, J. Herzberger (ed.), Elsevier, Amsterdam, 1994, pp. 209–276. (1994) Zbl0813.65077MR1318956
  8. Über ein Prinzip in der Verifikationsnumerik, Z. angew. Math. Mech. 75 (1995), S II, S 545–S 546.. (1995) Zbl0850.65104
  9. 10.1016/0377-0427(94)00089-J, J. Comp. Appl. Math. 60 (1995), 147–169. (1995) Zbl0839.65059MR1354653DOI10.1016/0377-0427(94)00089-J
  10. On a unified representation of some interval analytic algorithms, Rostock. Math. Kolloq. 49 (1995), 75–88. (1995) Zbl0861.65049MR1392204
  11. Success in Epsilon-Inflation, Scientific Computing and Validated Numerics, G. Alefeld, A. Frommer and B. Lang (eds.), Akademie Verlag, Berlin, 1996, pp. 98–104. (1996) Zbl0848.65035MR1394227
  12. Interval Methods for Systems of Equations, Cambridge University Press, Cambridge, 1990. (1990) Zbl0715.65030MR1100928
  13. Kleine Fehlerschranken bei Matrixproblemen, Thesis, Universität Karlsruhe, 1980. Zbl0437.65036
  14. Solving Algebraic Problems with High Accuracy, A New Approach to Scientific Computation, U. W. Kulisch and W. L. Miranker (eds.), Academic Press, New York, 1983, pp. 53–120. (1983) Zbl0597.65018MR0751813
  15. New Results in Verified Inclusions, Accurate Scientific Computation, Lecture Notes in Computer Science Vol.  235, W. L. Miranker and R. A. Toupin (eds.), Springer, Berlin, 1986, pp. 31–69. (1986) MR0868284
  16. 10.1007/BF02320201, Computing 47 (1992), 337–353. (1992) Zbl0753.65030MR1155502DOI10.1007/BF02320201

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.