Epsilon-inflation with contractive interval functions
Applications of Mathematics (1998)
- Volume: 43, Issue: 4, page 241-254
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topMayer, Günter. "Epsilon-inflation with contractive interval functions." Applications of Mathematics 43.4 (1998): 241-254. <http://eudml.org/doc/33010>.
@article{Mayer1998,
abstract = {For contractive interval functions $ [g] $ we show that $ [g]([x]^\{k_0\}_\epsilon ) \subseteq \int ([x]^\{k_0\}_\epsilon ) $ results from the iterative process $ [x]^\{k+1\} := [g]([x]^k_\epsilon ) $ after finitely many iterations if one uses the epsilon-inflated vector $ [x]^k_\epsilon $ as input for $ [g] $ instead of the original output vector $ [x]^k $. Applying Brouwer’s fixed point theorem, zeros of various mathematical problems can be verified in this way.},
author = {Mayer, Günter},
journal = {Applications of Mathematics},
keywords = {epsilon-inflation; P-contraction; contraction; verification algorithms; interval computation; nonlinear equations; eigenvalues; singular values; P-contraction; interval computation; nonlinear equations},
language = {eng},
number = {4},
pages = {241-254},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Epsilon-inflation with contractive interval functions},
url = {http://eudml.org/doc/33010},
volume = {43},
year = {1998},
}
TY - JOUR
AU - Mayer, Günter
TI - Epsilon-inflation with contractive interval functions
JO - Applications of Mathematics
PY - 1998
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 43
IS - 4
SP - 241
EP - 254
AB - For contractive interval functions $ [g] $ we show that $ [g]([x]^{k_0}_\epsilon ) \subseteq \int ([x]^{k_0}_\epsilon ) $ results from the iterative process $ [x]^{k+1} := [g]([x]^k_\epsilon ) $ after finitely many iterations if one uses the epsilon-inflated vector $ [x]^k_\epsilon $ as input for $ [g] $ instead of the original output vector $ [x]^k $. Applying Brouwer’s fixed point theorem, zeros of various mathematical problems can be verified in this way.
LA - eng
KW - epsilon-inflation; P-contraction; contraction; verification algorithms; interval computation; nonlinear equations; eigenvalues; singular values; P-contraction; interval computation; nonlinear equations
UR - http://eudml.org/doc/33010
ER -
References
top- Rigorous Error Bounds for Singular Values of a Matrix Using the Precise Scalar Product, Computerarithmetic, E. Kaucher, U. Kulisch and Ch. Ullrich (eds.), Teubner, Stuttgart, 1987, pp. 9–30. (1987) MR0904306
- Introduction to Interval Computations, Academic Press, New York, 1983. (1983) MR0733988
- 10.1007/BF02240207, Computing 36 (1986), 321–334. (1986) MR0843941DOI10.1007/BF02240207
- 10.1007/BF01947742, BIT 18 (1978), 42–51. (1978) MR0478583DOI10.1007/BF01947742
- Solving the Complex Algebraic Eigenvalue Problem with Verified High Accuracy, Accurate Numerical Algorithms, A Collection of Research Papers, Research Reports ESPRIT, Project 1072, DIAMOND, Vol. 1, Ch. Ullrich and J. Wolff von Gudenberg (eds.), Springer, Berlin, 1989, pp. 59–78. (1989)
- On the Inflation Parameter Used in Self-Validating Methods, Contributions to Computer Arithmetic and Self-Validating Numerical Methods, Ch. Ullrich (ed.), Baltzer, IMACS, Basel, 1990, pp. 127–132. (1990) MR1131093
- Result Verification for Eigenvectors and Eigenvalues, Topics in Validated Computations, J. Herzberger (ed.), Elsevier, Amsterdam, 1994, pp. 209–276. (1994) Zbl0813.65077MR1318956
- Über ein Prinzip in der Verifikationsnumerik, Z. angew. Math. Mech. 75 (1995), S II, S 545–S 546.. (1995) Zbl0850.65104
- 10.1016/0377-0427(94)00089-J, J. Comp. Appl. Math. 60 (1995), 147–169. (1995) Zbl0839.65059MR1354653DOI10.1016/0377-0427(94)00089-J
- On a unified representation of some interval analytic algorithms, Rostock. Math. Kolloq. 49 (1995), 75–88. (1995) Zbl0861.65049MR1392204
- Success in Epsilon-Inflation, Scientific Computing and Validated Numerics, G. Alefeld, A. Frommer and B. Lang (eds.), Akademie Verlag, Berlin, 1996, pp. 98–104. (1996) Zbl0848.65035MR1394227
- Interval Methods for Systems of Equations, Cambridge University Press, Cambridge, 1990. (1990) Zbl0715.65030MR1100928
- Kleine Fehlerschranken bei Matrixproblemen, Thesis, Universität Karlsruhe, 1980. Zbl0437.65036
- Solving Algebraic Problems with High Accuracy, A New Approach to Scientific Computation, U. W. Kulisch and W. L. Miranker (eds.), Academic Press, New York, 1983, pp. 53–120. (1983) Zbl0597.65018MR0751813
- New Results in Verified Inclusions, Accurate Scientific Computation, Lecture Notes in Computer Science Vol. 235, W. L. Miranker and R. A. Toupin (eds.), Springer, Berlin, 1986, pp. 31–69. (1986) MR0868284
- 10.1007/BF02320201, Computing 47 (1992), 337–353. (1992) Zbl0753.65030MR1155502DOI10.1007/BF02320201
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.