An estimator for parameters of a nonlinear nonnegative multidimensional AR(1) process
Applications of Mathematics (1998)
- Volume: 43, Issue: 5, page 389-398
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topAnděl, Jiří. "An estimator for parameters of a nonlinear nonnegative multidimensional AR(1) process." Applications of Mathematics 43.5 (1998): 389-398. <http://eudml.org/doc/33017>.
@article{Anděl1998,
abstract = {Let $\mathbb \{e\}_t=(e_\{t1\},\dots ,e_\{tp\})^\{\prime \}$ be a $p$-dimensional nonnegative strict white noise with finite second moments. Let $h_\{ij\}(x)$ be nondecreasing functions from $[0,\infty )$ onto $[0,\infty )$ such that $h_\{ij\}(x)\le x$ for $i,j=1,\dots ,p$. Let $\mathbb \{U\}=(u_\{ij\})$ be a $p\times p$ matrix with nonnegative elements having all its roots inside the unit circle. Define a process $\mathbb \{X\}_t=(X_\{t1\},\dots ,X_\{tp\})^\{\prime \}$ by \[ X\_\{tj\}=u\_\{j1\}h\_\{1j\}(X\_\{t-1,1\})+\dots +u\_\{jp\}h\_\{pj\}(X\_\{t-1,p\})+ e\_\{tj\} \]
for $j=1,\dots ,p$. A method for estimating $\mathbb \{U\}$ from a realization $\mathbb \{X\}_1,\dots ,\mathbb \{X\}_n$ is proposed. It is proved that the estimators are strongly consistent.},
author = {Anděl, Jiří},
journal = {Applications of Mathematics},
keywords = {autoregressive process; estimating parameters; multidimensional process; nonlinear process; nonnegative process; autoregressive processes; multidimensional processes; nonlinear processes; nonnegative processes},
language = {eng},
number = {5},
pages = {389-398},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {An estimator for parameters of a nonlinear nonnegative multidimensional AR(1) process},
url = {http://eudml.org/doc/33017},
volume = {43},
year = {1998},
}
TY - JOUR
AU - Anděl, Jiří
TI - An estimator for parameters of a nonlinear nonnegative multidimensional AR(1) process
JO - Applications of Mathematics
PY - 1998
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 43
IS - 5
SP - 389
EP - 398
AB - Let $\mathbb {e}_t=(e_{t1},\dots ,e_{tp})^{\prime }$ be a $p$-dimensional nonnegative strict white noise with finite second moments. Let $h_{ij}(x)$ be nondecreasing functions from $[0,\infty )$ onto $[0,\infty )$ such that $h_{ij}(x)\le x$ for $i,j=1,\dots ,p$. Let $\mathbb {U}=(u_{ij})$ be a $p\times p$ matrix with nonnegative elements having all its roots inside the unit circle. Define a process $\mathbb {X}_t=(X_{t1},\dots ,X_{tp})^{\prime }$ by \[ X_{tj}=u_{j1}h_{1j}(X_{t-1,1})+\dots +u_{jp}h_{pj}(X_{t-1,p})+ e_{tj} \]
for $j=1,\dots ,p$. A method for estimating $\mathbb {U}$ from a realization $\mathbb {X}_1,\dots ,\mathbb {X}_n$ is proposed. It is proved that the estimators are strongly consistent.
LA - eng
KW - autoregressive process; estimating parameters; multidimensional process; nonlinear process; nonnegative process; autoregressive processes; multidimensional processes; nonlinear processes; nonnegative processes
UR - http://eudml.org/doc/33017
ER -
References
top- Non-negative autoregressive models, J. Time Ser. Anal. 13 (1992), 283–295. (1992) Zbl0767.62070
- Estimation for regressive and autoregressive models with non-negative residual errors, J. Time Ser. Anal. 14 (1993), 179–191. (1993) MR1212017
- On AR(1) processes with exponential white noise, Commun. Statist. – Theory Methods 17 (1988), 1481–1495. (1988) Zbl0639.62082MR0945799
- Nonlinear nonnegative AR(1) processes, Commun. Statist. – Theory Methods 18 (1989), 4029–4037. (1989) Zbl0696.62347MR1058926
- Non-negative autoregressive processes, J. Time Ser. Anal. 10 (1989), 1–11. (1989)
- 10.1080/02331889008802269, Statistics 21 (1990), 591–600. (1990) Zbl0714.62087MR1087287DOI10.1080/02331889008802269
- An extension of the Borel lemma, Comment. Math. Univ. Carolinae 30 (1989), 403–404. (1989) MR1014141
- 10.1093/biomet/77.4.669, Biometrika 77 (1990), 669–687. (1990) MR1086681DOI10.1093/biomet/77.4.669
- 10.1080/03610928608829248, Commun. Statist. – Theory Methods 15 (1986), 2267–2293. (1986) MR0853011DOI10.1080/03610928608829248
- 10.1016/0304-4149(89)90090-2, Stochastic Processes Appl. 31 (1989), 237–250. (1989) MR0998115DOI10.1016/0304-4149(89)90090-2
- Estimation for autoregressive processes with positive innovations, Commun. Statist. – Stochastic Models 8 (1992), 479–498. (1992) MR1182425
- Stationarity of non-linear autoregressive processes, Tech. Rep., Institute of Hydrology, Wallingford, Oxon, U.K., 1977. (1977)
- Non-linear Time Series, Clarendon Press, Oxford, 1990. (1990) Zbl0716.62085
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.