An estimator for parameters of a nonlinear nonnegative multidimensional AR(1) process

Jiří Anděl

Applications of Mathematics (1998)

  • Volume: 43, Issue: 5, page 389-398
  • ISSN: 0862-7940

Abstract

top
Let 𝕖 t = ( e t 1 , , e t p ) ' be a p -dimensional nonnegative strict white noise with finite second moments. Let h i j ( x ) be nondecreasing functions from [ 0 , ) onto [ 0 , ) such that h i j ( x ) x for i , j = 1 , , p . Let 𝕌 = ( u i j ) be a p × p matrix with nonnegative elements having all its roots inside the unit circle. Define a process 𝕏 t = ( X t 1 , , X t p ) ' by X t j = u j 1 h 1 j ( X t - 1 , 1 ) + + u j p h p j ( X t - 1 , p ) + e t j for j = 1 , , p . A method for estimating 𝕌 from a realization 𝕏 1 , , 𝕏 n is proposed. It is proved that the estimators are strongly consistent.

How to cite

top

Anděl, Jiří. "An estimator for parameters of a nonlinear nonnegative multidimensional AR(1) process." Applications of Mathematics 43.5 (1998): 389-398. <http://eudml.org/doc/33017>.

@article{Anděl1998,
abstract = {Let $\mathbb \{e\}_t=(e_\{t1\},\dots ,e_\{tp\})^\{\prime \}$ be a $p$-dimensional nonnegative strict white noise with finite second moments. Let $h_\{ij\}(x)$ be nondecreasing functions from $[0,\infty )$ onto $[0,\infty )$ such that $h_\{ij\}(x)\le x$ for $i,j=1,\dots ,p$. Let $\mathbb \{U\}=(u_\{ij\})$ be a $p\times p$ matrix with nonnegative elements having all its roots inside the unit circle. Define a process $\mathbb \{X\}_t=(X_\{t1\},\dots ,X_\{tp\})^\{\prime \}$ by \[ X\_\{tj\}=u\_\{j1\}h\_\{1j\}(X\_\{t-1,1\})+\dots +u\_\{jp\}h\_\{pj\}(X\_\{t-1,p\})+ e\_\{tj\} \] for $j=1,\dots ,p$. A method for estimating $\mathbb \{U\}$ from a realization $\mathbb \{X\}_1,\dots ,\mathbb \{X\}_n$ is proposed. It is proved that the estimators are strongly consistent.},
author = {Anděl, Jiří},
journal = {Applications of Mathematics},
keywords = {autoregressive process; estimating parameters; multidimensional process; nonlinear process; nonnegative process; autoregressive processes; multidimensional processes; nonlinear processes; nonnegative processes},
language = {eng},
number = {5},
pages = {389-398},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {An estimator for parameters of a nonlinear nonnegative multidimensional AR(1) process},
url = {http://eudml.org/doc/33017},
volume = {43},
year = {1998},
}

TY - JOUR
AU - Anděl, Jiří
TI - An estimator for parameters of a nonlinear nonnegative multidimensional AR(1) process
JO - Applications of Mathematics
PY - 1998
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 43
IS - 5
SP - 389
EP - 398
AB - Let $\mathbb {e}_t=(e_{t1},\dots ,e_{tp})^{\prime }$ be a $p$-dimensional nonnegative strict white noise with finite second moments. Let $h_{ij}(x)$ be nondecreasing functions from $[0,\infty )$ onto $[0,\infty )$ such that $h_{ij}(x)\le x$ for $i,j=1,\dots ,p$. Let $\mathbb {U}=(u_{ij})$ be a $p\times p$ matrix with nonnegative elements having all its roots inside the unit circle. Define a process $\mathbb {X}_t=(X_{t1},\dots ,X_{tp})^{\prime }$ by \[ X_{tj}=u_{j1}h_{1j}(X_{t-1,1})+\dots +u_{jp}h_{pj}(X_{t-1,p})+ e_{tj} \] for $j=1,\dots ,p$. A method for estimating $\mathbb {U}$ from a realization $\mathbb {X}_1,\dots ,\mathbb {X}_n$ is proposed. It is proved that the estimators are strongly consistent.
LA - eng
KW - autoregressive process; estimating parameters; multidimensional process; nonlinear process; nonnegative process; autoregressive processes; multidimensional processes; nonlinear processes; nonnegative processes
UR - http://eudml.org/doc/33017
ER -

References

top
  1. Non-negative autoregressive models, J. Time Ser. Anal. 13 (1992), 283–295. (1992) Zbl0767.62070
  2. Estimation for regressive and autoregressive models with non-negative residual errors, J. Time Ser. Anal. 14 (1993), 179–191. (1993) MR1212017
  3. On AR(1) processes with exponential white noise, Commun. Statist. – Theory Methods 17 (1988), 1481–1495. (1988) Zbl0639.62082MR0945799
  4. Nonlinear nonnegative AR(1) processes, Commun. Statist. – Theory Methods 18 (1989), 4029–4037. (1989) Zbl0696.62347MR1058926
  5. Non-negative autoregressive processes, J. Time Ser. Anal. 10 (1989), 1–11. (1989) 
  6. 10.1080/02331889008802269, Statistics 21 (1990), 591–600. (1990) Zbl0714.62087MR1087287DOI10.1080/02331889008802269
  7. An extension of the Borel lemma, Comment. Math. Univ. Carolinae 30 (1989), 403–404. (1989) MR1014141
  8. 10.1093/biomet/77.4.669, Biometrika 77 (1990), 669–687. (1990) MR1086681DOI10.1093/biomet/77.4.669
  9. 10.1080/03610928608829248, Commun. Statist. – Theory Methods 15 (1986), 2267–2293. (1986) MR0853011DOI10.1080/03610928608829248
  10. 10.1016/0304-4149(89)90090-2, Stochastic Processes Appl. 31 (1989), 237–250. (1989) MR0998115DOI10.1016/0304-4149(89)90090-2
  11. Estimation for autoregressive processes with positive innovations, Commun. Statist. – Stochastic Models 8 (1992), 479–498. (1992) MR1182425
  12. Stationarity of non-linear autoregressive processes, Tech. Rep., Institute of Hydrology, Wallingford, Oxon, U.K., 1977. (1977) 
  13. Non-linear Time Series, Clarendon Press, Oxford, 1990. (1990) Zbl0716.62085

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.