A review of two different approaches for superconvergence analysis
Applications of Mathematics (1998)
- Volume: 43, Issue: 6, page 401-411
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topReferences
top- 10.1090/S0025-5718-1977-0431744-9, Math. Comp. 31 (1977), 94–111. (1977) MR0431744DOI10.1090/S0025-5718-1977-0431744-9
- Optimal points of the stresses approximated by triangular linear element in FEM, Natur. Sci. J. Xiangtan Univ. 1 (1978), 77–90. (1978)
- Superconvergence of finite element solution and its derivatives, Numer. Math. J. Chinese Univ. 3:2 (1981), 118–125. (1981) MR0635547
- Superconvergence of gradient of triangular linear element in general domain, Natur. Sci. J. Xiangtan Univ. 1 (1987), 114–127. (1987) MR0899930
- A new estimate for the finite element method and optimal point theorem for stresses, Natur. Sci. J. Xiangtan Univ. 1 (1978), 10–20. (1978)
- The finite element method for 4th order non-linear differential equation, Acta Mathematica Sinica 20:2 (1977), 109–118. (1977) MR0657978
- Some superconvergence results for Galerkin methods for the approximate solution of two-point boundary value problems, Topics in Numerical Analysis, Academic Press, 1973, pp. 89–92. (1973) MR0366044
- An estimate and a superconvergence result for a Galerkin method for elliptic equations based on tensor products of piecewise polynomials, RAIRO Anal. Numér. 8 (1974), 61–66. (1974) MR0359358
- A derivative extrapolation for second order triangular element, (1997), Master thesis. (1997)
- The high accuracy arithmetic for -th order rectangular finite element, (1990), Master thesis. (1990)
- 10.1007/BF00047538, Acta Appl. Math. 9 (1987), 175–198. (1987) DOI10.1007/BF00047538
- Superconvergence for higher-order triangular finite elements, Chinese J. Numer. Math. Appl. 12 (1990), 75–79. (1990) MR1118707
- Maximum norm estimates extrapolation and optimal points of stresses for the finite element methods on the strongly regular triangulation, J. Comput. Math. 1 (1983), 376–383. (1983)
- Linear finite elements with high accuracy. J. Comput. Math. 3, (1985), 115–133. (1985) MR0854355
- Construction and Analysis for Efficient Finite Element Method, Hebei University Press, 1996. (Chinese) (1996)
- Asymptotic expansion for the derivative of finite elements, J. Comput. Math. 2 (1984), 361–363. (1984) MR0869509
- The Preprocessing and Postprocessing for the Finite Element Method, Shanghai Scientific & Technical Publishers, 1994. (1994)
- 10.1016/0041-5553(69)90159-1, U.S.S.R. Comput. Math. and Math. Phys. 9 (1969), 158–183. (1969) DOI10.1016/0041-5553(69)90159-1
- 10.1137/0733027, SIAM J. Numer. Anal. 33 (1996), 505–521. (1996) MR1388486DOI10.1137/0733027
- Interior maximum norm estimates for finite element methods, Part II., Math. Comp (1995). (1995) MR0431753
- 10.2307/2005998, Math. Comp. 31 (1977), 652–660. (1977) MR0438664DOI10.2307/2005998
- Superconvergence in Galerkin Finite Element Methods, LN in Math. 1605, Springer, Berlin, 1995. (1995) Zbl0826.65092MR1439050
- General principles of superconvergence in Galerkin finite element methods, In Finite element methods: superconvergence, post-processing and a posteriori estimates, M. Křížek, P. Neittaanmäki, R. Stenberg (eds.), Marcel Dekker, New York, 1998, pp. 269–285. (1998) Zbl0902.65046MR1602738
- The derivative optimal point of the stresses for second order finite element method, Natur. Sci. J. Xiangtan Univ. 3 (1981), 36–45. (1981)
- Natural inner superconvergence for the finite element method, In Proc. of the China-France Symposium on Finite Element Methods (Beijing 1982), Science Press, Gorden and Breach, Beijing, 1983, pp. 935–960. (1983) Zbl0611.65074MR0754041
- Uniform superconvergence estimates of derivatives for the finite element method, Numer. Math. J. Xiangtan Univ. 5. Zbl0549.65073MR0745576
- Uniform superconvergence estimates for the finite element method, Natur. Sci. J. Xiangtan Univ. (19851983), 10–26 311–318. (19851983) MR0890708
- The Superconvergence Theory of Finite Element Methods, Hunan Scientific and Technical Publishers, Changsha, 1989. (Chinese) (1989)
- The superconvergence for the 3rd order triangular finite elements, (1997) (to appear). (ARRAY(0x8e7e6c0))
- Some superconvergence results in the finite element method, LN in Math. 606, (1977, 353–362), Springer, Berlin. (1977, 353–362) MR0488863