Stereology of dihedral angles

Vratislav Horálek

Applications of Mathematics (2000)

  • Volume: 45, Issue: 6, page 411-417
  • ISSN: 0862-7940

Abstract

top
The paper presents a short survey of stereological problems concerning dihedral angles, their solutions and applications, and introduces a graph for determining the distribution functions of planar angles under the hypothesis that dihedral angles in are of the same size and create a random field.

How to cite

top

Horálek, Vratislav. "Stereology of dihedral angles." Applications of Mathematics 45.6 (2000): 411-417. <http://eudml.org/doc/33069>.

@article{Horálek2000,
abstract = {The paper presents a short survey of stereological problems concerning dihedral angles, their solutions and applications, and introduces a graph for determining the distribution functions of planar angles under the hypothesis that dihedral angles in $\mathbb \{R\}^3$ are of the same size and create a random field.},
author = {Horálek, Vratislav},
journal = {Applications of Mathematics},
keywords = {dihedral angles; distribution function; graph theory; stereology; dihedral angle; distribution function; random planar section},
language = {eng},
number = {6},
pages = {411-417},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Stereology of dihedral angles},
url = {http://eudml.org/doc/33069},
volume = {45},
year = {2000},
}

TY - JOUR
AU - Horálek, Vratislav
TI - Stereology of dihedral angles
JO - Applications of Mathematics
PY - 2000
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 45
IS - 6
SP - 411
EP - 417
AB - The paper presents a short survey of stereological problems concerning dihedral angles, their solutions and applications, and introduces a graph for determining the distribution functions of planar angles under the hypothesis that dihedral angles in $\mathbb {R}^3$ are of the same size and create a random field.
LA - eng
KW - dihedral angles; distribution function; graph theory; stereology; dihedral angle; distribution function; random planar section
UR - http://eudml.org/doc/33069
ER -

References

top
  1. 10.1016/0026-0800(87)90022-X, Metallography 20 (1987), 491–493. (1987) DOI10.1016/0026-0800(87)90022-X
  2. Stereology of dihedral angles. Part I: First two moments, SIAM J. Appl. Math. 94 (1987), 670–677. (1987) MR0889646
  3. 10.1152/jappl.1985.58.1.89, J. Appl. Physiol. 58 (1985), 89–96. (1985) DOI10.1152/jappl.1985.58.1.89
  4. 10.1007/BF01396491, Num. Math. 33 (1979), 1–16. (1979) Zbl0438.65029MR0545738DOI10.1007/BF01396491
  5. 10.1145/355958.355970, ACM Trans. Math. Software 7 (1981), 398–403. (1981) DOI10.1145/355958.355970
  6. 10.1016/0026-0800(86)90036-4, Metallography 19 (1986), 209–217. (1986) DOI10.1016/0026-0800(86)90036-4
  7. Approximate determination of the angle variance in alloys, Zavodskaja laboratorija 8 (1971), 939–941. (Russian) (1971) 
  8. Grain shape and grain growth, Trans. Am. Soc. Metals 34 (1945), 156–201. (1945) 
  9. A note to dihedral angles and their stereology, In: Geometrical Problems of Image Processing (U. Eckhardt, A. Hübler, W. Nagel, G. Werner, eds.). Research in Informatics, Vol 4, Akademie-Verlag, Berlin, 1991, pp. 159–164. (1991) MR1111700
  10. Dihedral angle distributions, Acta Stereologica 6 (1987), 19–24. (1987) Zbl0617.60012
  11. 10.1137/0147046, SIAM J. Appl. Math. 47 (1987), 678–688. (1987) MR0889647DOI10.1137/0147046
  12. Dihedral angle measurement, Trans. Met. Soc. AIME 218 (1960), 933–935. (1960) 
  13. Heterogeneity of the single-phase polycrystalline structure due to dihedral angles, Metalurgia i odlewnictvo 7 (1981), 473–489. (1981) 
  14. Distributional analysis of dihedral angles in single-phase polycrystalline structure, Metalurgia i odlewnictvo 7 (1985), 171–182. (1985) 
  15. 10.1152/jappl.1985.58.1.97, J. Appl. Physiol. 58 (1985), 97–104. (1985) DOI10.1152/jappl.1985.58.1.97

NotesEmbed ?

top

You must be logged in to post comments.