Computing Elliptic Integrals by Duplication. B.C. Carlson Numerische Mathematik (1979) Volume: 33, page 1-16 ISSN: 0029-599X; 0945-3245/e Access Full Article top Access to full text How to cite top MLA BibTeX RIS Carlson, B.C.. "Computing Elliptic Integrals by Duplication.." Numerische Mathematik 33 (1979): 1-16. <http://eudml.org/doc/132624>. @article{Carlson1979, author = {Carlson, B.C.}, journal = {Numerische Mathematik}, keywords = {elliptic integrals; logarithms; arctangents; duplication theorem; Cauchy principal values; recurrence relation; elementary symmetric functions; R- polynomials}, pages = {1-16}, title = {Computing Elliptic Integrals by Duplication.}, url = {http://eudml.org/doc/132624}, volume = {33}, year = {1979},} TY - JOURAU - Carlson, B.C.TI - Computing Elliptic Integrals by Duplication.JO - Numerische MathematikPY - 1979VL - 33SP - 1EP - 16KW - elliptic integrals; logarithms; arctangents; duplication theorem; Cauchy principal values; recurrence relation; elementary symmetric functions; R- polynomialsUR - http://eudml.org/doc/132624ER - Citations in EuDML Documents top Vratislav Horálek, Stereology of dihedral angles NotesEmbed ? top You must be logged in to post comments.
How to cite top MLA BibTeX RIS Carlson, B.C.. "Computing Elliptic Integrals by Duplication.." Numerische Mathematik 33 (1979): 1-16. <http://eudml.org/doc/132624>. @article{Carlson1979, author = {Carlson, B.C.}, journal = {Numerische Mathematik}, keywords = {elliptic integrals; logarithms; arctangents; duplication theorem; Cauchy principal values; recurrence relation; elementary symmetric functions; R- polynomials}, pages = {1-16}, title = {Computing Elliptic Integrals by Duplication.}, url = {http://eudml.org/doc/132624}, volume = {33}, year = {1979},} TY - JOURAU - Carlson, B.C.TI - Computing Elliptic Integrals by Duplication.JO - Numerische MathematikPY - 1979VL - 33SP - 1EP - 16KW - elliptic integrals; logarithms; arctangents; duplication theorem; Cauchy principal values; recurrence relation; elementary symmetric functions; R- polynomialsUR - http://eudml.org/doc/132624ER -