On exact results in the finite element method

Ivan Hlaváček; Michal Křížek

Applications of Mathematics (2001)

  • Volume: 46, Issue: 6, page 467-478
  • ISSN: 0862-7940

Abstract

top
We prove that the finite element method for one-dimensional problems yields no discretization error at nodal points provided the shape functions are appropriately chosen. Then we consider a biharmonic problem with mixed boundary conditions and the weak solution u . We show that the Galerkin approximation of u based on the so-called biharmonic finite elements is independent of the values of u in the interior of any subelement.

How to cite

top

Hlaváček, Ivan, and Křížek, Michal. "On exact results in the finite element method." Applications of Mathematics 46.6 (2001): 467-478. <http://eudml.org/doc/33097>.

@article{Hlaváček2001,
abstract = {We prove that the finite element method for one-dimensional problems yields no discretization error at nodal points provided the shape functions are appropriately chosen. Then we consider a biharmonic problem with mixed boundary conditions and the weak solution $u$. We show that the Galerkin approximation of $u$ based on the so-called biharmonic finite elements is independent of the values of $u$ in the interior of any subelement.},
author = {Hlaváček, Ivan, Křížek, Michal},
journal = {Applications of Mathematics},
keywords = {boundary value elliptic problems; finite element method; generalized splines; elastic plate; elliptic boundary value problems; finite element method; numerical example; Galerkin method; biharmonic problem},
language = {eng},
number = {6},
pages = {467-478},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On exact results in the finite element method},
url = {http://eudml.org/doc/33097},
volume = {46},
year = {2001},
}

TY - JOUR
AU - Hlaváček, Ivan
AU - Křížek, Michal
TI - On exact results in the finite element method
JO - Applications of Mathematics
PY - 2001
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 46
IS - 6
SP - 467
EP - 478
AB - We prove that the finite element method for one-dimensional problems yields no discretization error at nodal points provided the shape functions are appropriately chosen. Then we consider a biharmonic problem with mixed boundary conditions and the weak solution $u$. We show that the Galerkin approximation of $u$ based on the so-called biharmonic finite elements is independent of the values of $u$ in the interior of any subelement.
LA - eng
KW - boundary value elliptic problems; finite element method; generalized splines; elastic plate; elliptic boundary value problems; finite element method; numerical example; Galerkin method; biharmonic problem
UR - http://eudml.org/doc/33097
ER -

References

top
  1. The Theory of Splines and Their Applications, Academic Press, London, 1967. (1967) MR0239327
  2. Numerical Processes in Differential Equations, John Wiley & Sons, London, 1966. (1966) MR0223101
  3. 10.1016/0045-7825(93)90119-I, Comput. Methods Appl. Mech. Engrg. 105 (1993), 125–141. (1993) MR1222297DOI10.1016/0045-7825(93)90119-I
  4. 10.1007/BF01931217, BIT 19 (1979), 19–26. (1979) MR0530111DOI10.1007/BF01931217
  5. 10.1016/0020-7225(80)90049-X, Internat. J. Engrg. Sci. 18 (1980), 249–276. (1980) Zbl0429.73084MR0661274DOI10.1016/0020-7225(80)90049-X
  6. Superconvergence phenomena in finite element methods, PhD thesis, Utrecht Univ. (1995). (1995) 
  7. 10.1142/S0218202594000327, Math. Models Methods Appl. Sci. 4 (1994), 571–587. (1994) MR1291139DOI10.1142/S0218202594000327
  8. The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, New York, Oxford, 1978. (1978) Zbl0383.65058MR0520174
  9. Interpolation and approximation by piecewise quadratic C 1 -functions of two variables, In: Multivariate Approximation Theory (W. Schempp and K. Zeller, eds.), ISNM vol. 51, Birkhäuser, Basel, 1979, pp. 146–161. (1979) MR0560670
  10. 10.1007/BF00249518, Arch. Rational Mech. Anal. 36 (1970), 305–334. (1970) DOI10.1007/BF00249518
  11. Finite elements with harmonic interpolation functions, In: Proc. Conf. MAFELAP (J. R.  Whiteman, ed.), Academic Press, London, 1973, pp. 131–142. (1973) Zbl0278.73051
  12. The superconvergence of the spline finite element solution and its second order derivative for the two-point boundary problem of a fourth order differential equation, J.  Zhejiang Univ. 3 (1982), 92–99. (1982) 
  13. On harmonic and biharmonic finite elements, In: Finite Element Methods III: Three-dimensional problems, Vol. 15, M. Křížek, P. Neittaanmäki (eds.), GAKUTO Internat. Ser. Math. Sci. Appl., Tokyo, 2001, pp. 146–154. (2001) MR1896273
  14. On time-harmonic Maxwell equations with nonhomogeneous conductivities: solvability and FE-approximation, Apl.  Mat. 34 (1989), 480–499. (1989) MR1026513
  15. Finite Element Approximation of Variational Problems and Applications, Longman, Harlow, 1990. (1990) MR1066462
  16. Modelling Analysis and Control of Thin Plates, Masson, Paris and Springer-Verlag, Berlin, 1989. (1989) 
  17. Full convergence order for hyperbolic finite elements, In: Proc. Conf. Discrete Galerkin Methods (B.  Cockburn, ed.), Newport 1999, pp. 167–177. MR1842172
  18. Mathematical Theory of Elastic and Elasto-Plastic Bodies: An Introduction, Elsevier, Amsterdam, Oxford, New York, 1981. (1981) MR0600655
  19. Variational Methods in Mathematics, Science and Engineering, chap. 23, Riedel, Dodrecht, 1980. (1980) MR0596582
  20. An Analysis of the Finite Element Method, Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1973. (1973) MR0443377
  21. 10.2514/3.5067, AIAA J. 7 (1969), 178–180. (1969) DOI10.2514/3.5067
  22. Exact results given by finite element methods in mechanics, J.  Méch. Théor. Appl. 1 (1982), 323–329. (1982) Zbl0503.73046MR0700053

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.