On time-harmonic Maxwell equations with nonhomogeneous conductivities: Solvability and FE-approximation

Michal Křížek; Pekka Neittaanmäki

Aplikace matematiky (1989)

  • Volume: 34, Issue: 6, page 480-499
  • ISSN: 0862-7940

Abstract

top
The solvability of time-harmonic Maxwell equations in the 3D-case with nonhomogeneous conductivities is considered by adapting Sobolev space technique and variational formulation of the problem in question. Moreover, a finite element approximation is presented in the 3D-case together with an error estimate in the energy norm. Some remarks are given to the 2D-problem arising from geophysics.

How to cite

top

Křížek, Michal, and Neittaanmäki, Pekka. "On time-harmonic Maxwell equations with nonhomogeneous conductivities: Solvability and FE-approximation." Aplikace matematiky 34.6 (1989): 480-499. <http://eudml.org/doc/15604>.

@article{Křížek1989,
abstract = {The solvability of time-harmonic Maxwell equations in the 3D-case with nonhomogeneous conductivities is considered by adapting Sobolev space technique and variational formulation of the problem in question. Moreover, a finite element approximation is presented in the 3D-case together with an error estimate in the energy norm. Some remarks are given to the 2D-problem arising from geophysics.},
author = {Křížek, Michal, Neittaanmäki, Pekka},
journal = {Aplikace matematiky},
keywords = {time-harmonic Maxwell equations; non-homogeneous conductivities; three- dimensional problem; error estimation; finite element approximation; numerical experiments; solution theory; time-harmonic Maxwell equations; non-homogeneous conductivities; three- dimensional problem; error estimation; finite element approximation; numerical experiments},
language = {eng},
number = {6},
pages = {480-499},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On time-harmonic Maxwell equations with nonhomogeneous conductivities: Solvability and FE-approximation},
url = {http://eudml.org/doc/15604},
volume = {34},
year = {1989},
}

TY - JOUR
AU - Křížek, Michal
AU - Neittaanmäki, Pekka
TI - On time-harmonic Maxwell equations with nonhomogeneous conductivities: Solvability and FE-approximation
JO - Aplikace matematiky
PY - 1989
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 34
IS - 6
SP - 480
EP - 499
AB - The solvability of time-harmonic Maxwell equations in the 3D-case with nonhomogeneous conductivities is considered by adapting Sobolev space technique and variational formulation of the problem in question. Moreover, a finite element approximation is presented in the 3D-case together with an error estimate in the energy norm. Some remarks are given to the 2D-problem arising from geophysics.
LA - eng
KW - time-harmonic Maxwell equations; non-homogeneous conductivities; three- dimensional problem; error estimation; finite element approximation; numerical experiments; solution theory; time-harmonic Maxwell equations; non-homogeneous conductivities; three- dimensional problem; error estimation; finite element approximation; numerical experiments
UR - http://eudml.org/doc/15604
ER -

References

top
  1. V. Bezvoda K. Segeth, Mathematical modeling in electromagnetic prospecting methods, Charles Univ., Prague, 1982. (1982) 
  2. E. B. Byhovskiy, Solution of a mixed problem for the system of Maxwell equations in case of ideally conductive boundary, Vestnik Leningrad. Univ. Mat. Mekh. Astronom. 12 (1957), 50-66. (1957) MR0098567
  3. V. Červ K. Segeth, A comparison of the accuracy of the finite-difference solution to boundary-value problems for the Helmholtz equation obtained by direct and iterative methods, Apl. Mat. 27 (1982), 375-390. (1982) MR0674982
  4. P. G. Ciarlet, The finite element method for elliptic problems, North-Holland, Amsterdam, New York, Oxford, 1978. (1978) Zbl0383.65058MR0520174
  5. D. Colton L. Päivärinta, 10.1017/S0305004100065154, Math. Proc. Cambridge Philos. Soc. 103 (1988), 561-575. (1988) MR0932679DOI10.1017/S0305004100065154
  6. G. Duvaut J. L. Lions, Inequalities in mechanics and physics, Springer-Verlag, Berlin, 1976. (1976) MR0521262
  7. V. Girault P. A. Raviart, Finite element methods for Navier-Stokes equations, Springer- Verlag, Berlin, Heidelberg, New York, Tokyo, 1986. (1986) MR0851383
  8. P. Grisvard, Boundary value problems in nonsmooth domains, Lecture Notes 19, Univ. of Maryland, Dep. of Math., College Park, 1980. (19,) 
  9. G. Heindl, Interpolation and approximation by piecewise quadratic C 1 -functions of two variables, in Multivariate approximation theory, ed. by W. Schempp and K. Zeller. ISNM vol. 51, Birkhäuser, Basel, 1979, pp. 146-161. (1979) MR0560670
  10. E. Hewitt K. Stromberg, Real and abstract analysis, Springer-Verlag, New York, Heidelberg, Berlin, 1975. (1975) MR0367121
  11. J. Kadlec, On the regularity of the solution of the Poisson problem on a domain with boundary locally similar to the boundary of convex open set, Czechoslovak Math. J. 14 (1964), 386-393. (1964) MR0170088
  12. F. Kikuchi, 10.1007/BF03167091, Japan J. Appl. Math. 3 (1986), 53-58. (1986) MR0899213DOI10.1007/BF03167091
  13. M. Křížek P. Neittaanmäki, Solvability of a first order system in three-dimensional nonsmooth domains, Apl. Mat. 30 (1985), 307-315. (1985) MR0795991
  14. S. Mareš, al., Introduction to applied geophysics, (Czech). SNTL, Prague, 1979. (1979) 
  15. J. Nečas, Les méthodes directes en théorie des équations elliptiques, Academia, Prague, 1967. (1967) MR0227584
  16. P. Neittaanmäki R. Picard, 10.1080/01630568008816057, Numer. Funct. Anal. Optim. 2 (1980), 267-285. (1980) MR0588947DOI10.1080/01630568008816057
  17. J. Saranen, On an inequality of Friedrichs, Math. Scand. 51 (1982), 310-322. (1982) Zbl0524.35100MR0690534
  18. R. S. Varga, Matrix iterative analysis, Prentice-Hall, Englewood Cliffs, New Jersey, 1962. (1962) MR0158502
  19. V. V. Voevodin, Ju. A. Kuzněcov, Matrices and computation, (Russian). Nauka, Moscow, 1984. (1984) 
  20. Ch. Weber, 10.1002/mma.1670020103, Math. Methods Appl. Sci. 2 (1980), 12-25. (1980) Zbl0432.35032MR0561375DOI10.1002/mma.1670020103
  21. Ch. Weber, 10.1002/mma.1670030137, Math. Methods Appl. Sci. 3 (1981), 523-536. (1981) Zbl0477.35020MR0657071DOI10.1002/mma.1670030137

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.