On time-harmonic Maxwell equations with nonhomogeneous conductivities: Solvability and FE-approximation
Michal Křížek; Pekka Neittaanmäki
Aplikace matematiky (1989)
- Volume: 34, Issue: 6, page 480-499
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topKřížek, Michal, and Neittaanmäki, Pekka. "On time-harmonic Maxwell equations with nonhomogeneous conductivities: Solvability and FE-approximation." Aplikace matematiky 34.6 (1989): 480-499. <http://eudml.org/doc/15604>.
@article{Křížek1989,
abstract = {The solvability of time-harmonic Maxwell equations in the 3D-case with nonhomogeneous conductivities is considered by adapting Sobolev space technique and variational formulation of the problem in question. Moreover, a finite element approximation is presented in the 3D-case together with an error estimate in the energy norm. Some remarks are given to the 2D-problem arising from geophysics.},
author = {Křížek, Michal, Neittaanmäki, Pekka},
journal = {Aplikace matematiky},
keywords = {time-harmonic Maxwell equations; non-homogeneous conductivities; three- dimensional problem; error estimation; finite element approximation; numerical experiments; solution theory; time-harmonic Maxwell equations; non-homogeneous conductivities; three- dimensional problem; error estimation; finite element approximation; numerical experiments},
language = {eng},
number = {6},
pages = {480-499},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On time-harmonic Maxwell equations with nonhomogeneous conductivities: Solvability and FE-approximation},
url = {http://eudml.org/doc/15604},
volume = {34},
year = {1989},
}
TY - JOUR
AU - Křížek, Michal
AU - Neittaanmäki, Pekka
TI - On time-harmonic Maxwell equations with nonhomogeneous conductivities: Solvability and FE-approximation
JO - Aplikace matematiky
PY - 1989
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 34
IS - 6
SP - 480
EP - 499
AB - The solvability of time-harmonic Maxwell equations in the 3D-case with nonhomogeneous conductivities is considered by adapting Sobolev space technique and variational formulation of the problem in question. Moreover, a finite element approximation is presented in the 3D-case together with an error estimate in the energy norm. Some remarks are given to the 2D-problem arising from geophysics.
LA - eng
KW - time-harmonic Maxwell equations; non-homogeneous conductivities; three- dimensional problem; error estimation; finite element approximation; numerical experiments; solution theory; time-harmonic Maxwell equations; non-homogeneous conductivities; three- dimensional problem; error estimation; finite element approximation; numerical experiments
UR - http://eudml.org/doc/15604
ER -
References
top- V. Bezvoda K. Segeth, Mathematical modeling in electromagnetic prospecting methods, Charles Univ., Prague, 1982. (1982)
- E. B. Byhovskiy, Solution of a mixed problem for the system of Maxwell equations in case of ideally conductive boundary, Vestnik Leningrad. Univ. Mat. Mekh. Astronom. 12 (1957), 50-66. (1957) MR0098567
- V. Červ K. Segeth, A comparison of the accuracy of the finite-difference solution to boundary-value problems for the Helmholtz equation obtained by direct and iterative methods, Apl. Mat. 27 (1982), 375-390. (1982) MR0674982
- P. G. Ciarlet, The finite element method for elliptic problems, North-Holland, Amsterdam, New York, Oxford, 1978. (1978) Zbl0383.65058MR0520174
- D. Colton L. Päivärinta, 10.1017/S0305004100065154, Math. Proc. Cambridge Philos. Soc. 103 (1988), 561-575. (1988) MR0932679DOI10.1017/S0305004100065154
- G. Duvaut J. L. Lions, Inequalities in mechanics and physics, Springer-Verlag, Berlin, 1976. (1976) MR0521262
- V. Girault P. A. Raviart, Finite element methods for Navier-Stokes equations, Springer- Verlag, Berlin, Heidelberg, New York, Tokyo, 1986. (1986) MR0851383
- P. Grisvard, Boundary value problems in nonsmooth domains, Lecture Notes 19, Univ. of Maryland, Dep. of Math., College Park, 1980. (19,)
- G. Heindl, Interpolation and approximation by piecewise quadratic -functions of two variables, in Multivariate approximation theory, ed. by W. Schempp and K. Zeller. ISNM vol. 51, Birkhäuser, Basel, 1979, pp. 146-161. (1979) MR0560670
- E. Hewitt K. Stromberg, Real and abstract analysis, Springer-Verlag, New York, Heidelberg, Berlin, 1975. (1975) MR0367121
- J. Kadlec, On the regularity of the solution of the Poisson problem on a domain with boundary locally similar to the boundary of convex open set, Czechoslovak Math. J. 14 (1964), 386-393. (1964) MR0170088
- F. Kikuchi, 10.1007/BF03167091, Japan J. Appl. Math. 3 (1986), 53-58. (1986) MR0899213DOI10.1007/BF03167091
- M. Křížek P. Neittaanmäki, Solvability of a first order system in three-dimensional nonsmooth domains, Apl. Mat. 30 (1985), 307-315. (1985) MR0795991
- S. Mareš, al., Introduction to applied geophysics, (Czech). SNTL, Prague, 1979. (1979)
- J. Nečas, Les méthodes directes en théorie des équations elliptiques, Academia, Prague, 1967. (1967) MR0227584
- P. Neittaanmäki R. Picard, 10.1080/01630568008816057, Numer. Funct. Anal. Optim. 2 (1980), 267-285. (1980) MR0588947DOI10.1080/01630568008816057
- J. Saranen, 10.7146/math.scand.a-11983, Math. Scand. 51 (1982), 310-322. (1982) Zbl0524.35100MR0690534DOI10.7146/math.scand.a-11983
- R. S. Varga, Matrix iterative analysis, Prentice-Hall, Englewood Cliffs, New Jersey, 1962. (1962) MR0158502
- V. V. Voevodin, Ju. A. Kuzněcov, Matrices and computation, (Russian). Nauka, Moscow, 1984. (1984)
- Ch. Weber, 10.1002/mma.1670020103, Math. Methods Appl. Sci. 2 (1980), 12-25. (1980) Zbl0432.35032MR0561375DOI10.1002/mma.1670020103
- Ch. Weber, 10.1002/mma.1670030137, Math. Methods Appl. Sci. 3 (1981), 523-536. (1981) Zbl0477.35020MR0657071DOI10.1002/mma.1670030137
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.