Attractors for general operators
Applications of Mathematics (2003)
- Volume: 48, Issue: 1, page 31-47
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topMiranville, Alain. "Attractors for general operators." Applications of Mathematics 48.1 (2003): 31-47. <http://eudml.org/doc/33132>.
@article{Miranville2003,
abstract = {In this article we introduce the notion of a minimal attractor for families of operators that do not necessarily form semigroups. We then obtain some results on the existence of the minimal attractor. We also consider the nonautonomous case. As an application, we obtain the existence of the minimal attractor for models of Cahn-Hilliard equations in deformable elastic continua.},
author = {Miranville, Alain},
journal = {Applications of Mathematics},
keywords = {global attractor; minimal attractor; exponential attractor; weakly coupled system; global attractor; minimal attractor; exponential attractor; weakly coupled system},
language = {eng},
number = {1},
pages = {31-47},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Attractors for general operators},
url = {http://eudml.org/doc/33132},
volume = {48},
year = {2003},
}
TY - JOUR
AU - Miranville, Alain
TI - Attractors for general operators
JO - Applications of Mathematics
PY - 2003
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 48
IS - 1
SP - 31
EP - 47
AB - In this article we introduce the notion of a minimal attractor for families of operators that do not necessarily form semigroups. We then obtain some results on the existence of the minimal attractor. We also consider the nonautonomous case. As an application, we obtain the existence of the minimal attractor for models of Cahn-Hilliard equations in deformable elastic continua.
LA - eng
KW - global attractor; minimal attractor; exponential attractor; weakly coupled system; global attractor; minimal attractor; exponential attractor; weakly coupled system
UR - http://eudml.org/doc/33132
ER -
References
top- 10.1006/jdeq.1998.3450, J. Differential Equations 150 (1998), 264–316. (1998) MR1658609DOI10.1006/jdeq.1998.3450
- 10.1007/BF02218725, J. Dynam. Differential Equations 7 (1995), 567–590. (1995) MR1362671DOI10.1007/BF02218725
- Attractors of Evolution Equations, North-Holland, Amsterdam, 1992. (1992) MR1156492
- 10.1016/0001-6160(61)90182-1, Acta Metall. 9 (1961), 795–801. (1961) DOI10.1016/0001-6160(61)90182-1
- 10.1063/1.1744102, J. Chem. Phys. 2 (1958), 258–267. (1958) DOI10.1063/1.1744102
- The Cahn-Hilliard equation for deformable elastic continua, Adv. Math. Sci. Appl. 10 (2000), 530–569. (2000) MR1807441
- 10.1016/S0893-9659(98)00143-8, Appl. Math. Lett. 12 (1999), 23–28. (1999) MR1748727DOI10.1016/S0893-9659(98)00143-8
- Weakly coupled dynamical systems and applications, Preprint No 121, Université de Poitiers. MR1919340
- Attractors of nonautonomous dynamical systems and their dimension, J. Math. Pures Appl. 73 (1994), 279–333. (1994) MR1273705
- 10.1023/A:1022636328133, J. Dynam. Differential Equations 10 (1998), 37–45. (1998) MR1607533DOI10.1023/A:1022636328133
- Exponential Attractors for Dissipative Evolution Equations, Masson, 1994. (1994) MR1335230
- 10.1016/S0764-4442(00)00259-7, C. R. Acad. Sci. Paris Sér. I Math. 330 (2000), 713–718. (2000) MR1763916DOI10.1016/S0764-4442(00)00259-7
- The infinite dimensional exponential attractor for a nonautonomous reaction-diffusion system, Math. Nachr (to appear). (to appear)
- Exponential attractors for nonautonomous first-order evolution equations, Discrete Contin. Dynam. Systems 4 (1998), 225–240. (1998) MR1617294
- Exponentially attracting finite dimensional sets for the processes generated by nonautonomous semilinear wave equations, Funkcial. Ekvac. 36 (1993), 1–10. (1993) Zbl0823.35119MR1232076
- 10.1016/0022-0396(88)90110-6, J. Differential Equations 73 (1988), 309–353. (1988) MR0943945DOI10.1016/0022-0396(88)90110-6
- Thèse, Université Bordeaux-I, 1996. (1996)
- Attractors for damped nonlinear hyperbolic equations, J. Math. Pures Appl. 66 (1987), 273–319. (1987) MR0913856
- 10.1016/0167-2789(95)00173-5, Physica D 92 (1996), 178–192. (1996) Zbl0885.35121MR1387065DOI10.1016/0167-2789(95)00173-5
- Asymptotic Behavior of Dissipative Systems, Math. Surveys and Monographs, Vol. 25, AMS, Providence, 1988. (1988) Zbl0642.58013MR0941371
- Systèmes dynamiques dissipatifs et applications, Masson, 1991. (1991) Zbl0726.58001MR1084372
- Attractors for Semigroups and Evolution Equations, Cambridge University Press, Cambridge, 1991. (1991) Zbl0755.47049MR1133627
- 10.1016/S0893-9659(98)00004-4, Appl. Math. Lett. 11 (1998), 19–22. (1998) MR1609661DOI10.1016/S0893-9659(98)00004-4
- 10.1016/S0764-4442(99)80153-0, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), 145–150. (1999) Zbl1141.35340MR1669003DOI10.1016/S0764-4442(99)80153-0
- Exponential attractors for a class of evolution equations by a decomposition method. II. The nonautonomous case, C. R. Acad. Sci. Paris Ser. I Math. 328 (1999), 907–912. (1999) MR1689877
- Some generalizations of the Cahn-Hilliard equation, Asymptotic Anal. 22 (2000), 235–259. (2000) Zbl0953.35055MR1753766
- 10.1016/S0362-546X(00)00104-8, Nonlinear Anal. Series B 2 (2001), 273–304. (2001) Zbl0989.35066MR1835609DOI10.1016/S0362-546X(00)00104-8
- 10.1090/S0894-0347-1988-0943276-7, J. Amer. Math. Soc. 1 (1988), 805–866. (1988) MR0943276DOI10.1090/S0894-0347-1988-0943276-7
- Nonautonomous differential equations and topological dynamics, I, II, Trans. Amer. Math. Soc. 127 (1967), 241–262, 263–283. (1967)
- Global attractor for general nonautonomous dynamical systems, Nonlinear World 2 (1995), 191–216. (1995) Zbl0822.34048MR1376953
- 10.1016/S0362-546X(95)00229-O, Nonlinear Anal. 28 (1997), 1785–1797. (1997) Zbl0873.58044MR1432632DOI10.1016/S0362-546X(95)00229-O
- 10.1080/00036819308840194, Appl. Anal. 50 (1993), 217–241. (1993) Zbl0739.34052MR1278326DOI10.1080/00036819308840194
- Infinite Dimensional Dynamical Systems in Mechanics and Physics, 2nd ed, Springer-Verlag, New-York, 1997. (1997) Zbl0871.35001MR1441312
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.