Attractors for general operators

Alain Miranville

Applications of Mathematics (2003)

  • Volume: 48, Issue: 1, page 31-47
  • ISSN: 0862-7940

Abstract

top
In this article we introduce the notion of a minimal attractor for families of operators that do not necessarily form semigroups. We then obtain some results on the existence of the minimal attractor. We also consider the nonautonomous case. As an application, we obtain the existence of the minimal attractor for models of Cahn-Hilliard equations in deformable elastic continua.

How to cite

top

Miranville, Alain. "Attractors for general operators." Applications of Mathematics 48.1 (2003): 31-47. <http://eudml.org/doc/33132>.

@article{Miranville2003,
abstract = {In this article we introduce the notion of a minimal attractor for families of operators that do not necessarily form semigroups. We then obtain some results on the existence of the minimal attractor. We also consider the nonautonomous case. As an application, we obtain the existence of the minimal attractor for models of Cahn-Hilliard equations in deformable elastic continua.},
author = {Miranville, Alain},
journal = {Applications of Mathematics},
keywords = {global attractor; minimal attractor; exponential attractor; weakly coupled system; global attractor; minimal attractor; exponential attractor; weakly coupled system},
language = {eng},
number = {1},
pages = {31-47},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Attractors for general operators},
url = {http://eudml.org/doc/33132},
volume = {48},
year = {2003},
}

TY - JOUR
AU - Miranville, Alain
TI - Attractors for general operators
JO - Applications of Mathematics
PY - 2003
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 48
IS - 1
SP - 31
EP - 47
AB - In this article we introduce the notion of a minimal attractor for families of operators that do not necessarily form semigroups. We then obtain some results on the existence of the minimal attractor. We also consider the nonautonomous case. As an application, we obtain the existence of the minimal attractor for models of Cahn-Hilliard equations in deformable elastic continua.
LA - eng
KW - global attractor; minimal attractor; exponential attractor; weakly coupled system; global attractor; minimal attractor; exponential attractor; weakly coupled system
UR - http://eudml.org/doc/33132
ER -

References

top
  1. 10.1006/jdeq.1998.3450, J.  Differential Equations 150 (1998), 264–316. (1998) MR1658609DOI10.1006/jdeq.1998.3450
  2. 10.1007/BF02218725, J.  Dynam. Differential Equations 7 (1995), 567–590. (1995) MR1362671DOI10.1007/BF02218725
  3. Attractors of Evolution Equations, North-Holland, Amsterdam, 1992. (1992) MR1156492
  4. 10.1016/0001-6160(61)90182-1, Acta Metall. 9 (1961), 795–801. (1961) DOI10.1016/0001-6160(61)90182-1
  5. 10.1063/1.1744102, J.  Chem. Phys. 2 (1958), 258–267. (1958) DOI10.1063/1.1744102
  6. The Cahn-Hilliard equation for deformable elastic continua, Adv. Math. Sci. Appl. 10 (2000), 530–569. (2000) MR1807441
  7. 10.1016/S0893-9659(98)00143-8, Appl. Math. Lett. 12 (1999), 23–28. (1999) MR1748727DOI10.1016/S0893-9659(98)00143-8
  8. Weakly coupled dynamical systems and applications, Preprint No 121, Université de Poitiers. MR1919340
  9. Attractors of nonautonomous dynamical systems and their dimension, J.  Math. Pures Appl. 73 (1994), 279–333. (1994) MR1273705
  10. 10.1023/A:1022636328133, J.  Dynam. Differential Equations 10 (1998), 37–45. (1998) MR1607533DOI10.1023/A:1022636328133
  11. Exponential Attractors for Dissipative Evolution Equations, Masson, 1994. (1994) MR1335230
  12. 10.1016/S0764-4442(00)00259-7, C.  R.  Acad. Sci. Paris Sér. I Math. 330 (2000), 713–718. (2000) MR1763916DOI10.1016/S0764-4442(00)00259-7
  13. The infinite dimensional exponential attractor for a nonautonomous reaction-diffusion system, Math. Nachr (to appear). (to appear) 
  14. Exponential attractors for nonautonomous first-order evolution equations, Discrete Contin. Dynam. Systems 4 (1998), 225–240. (1998) MR1617294
  15. Exponentially attracting finite dimensional sets for the processes generated by nonautonomous semilinear wave equations, Funkcial. Ekvac. 36 (1993), 1–10. (1993) Zbl0823.35119MR1232076
  16. 10.1016/0022-0396(88)90110-6, J.  Differential Equations 73 (1988), 309–353. (1988) MR0943945DOI10.1016/0022-0396(88)90110-6
  17. Thèse, Université Bordeaux-I, 1996. (1996) 
  18. Attractors for damped nonlinear hyperbolic equations, J.  Math. Pures Appl. 66 (1987), 273–319. (1987) MR0913856
  19. 10.1016/0167-2789(95)00173-5, Physica D  92 (1996), 178–192. (1996) Zbl0885.35121MR1387065DOI10.1016/0167-2789(95)00173-5
  20. Asymptotic Behavior of Dissipative Systems, Math. Surveys and Monographs, Vol. 25, AMS, Providence, 1988. (1988) Zbl0642.58013MR0941371
  21. Systèmes dynamiques dissipatifs et applications, Masson, 1991. (1991) Zbl0726.58001MR1084372
  22. Attractors for Semigroups and Evolution Equations, Cambridge University Press, Cambridge, 1991. (1991) Zbl0755.47049MR1133627
  23. 10.1016/S0893-9659(98)00004-4, Appl. Math. Lett. 11 (1998), 19–22. (1998) MR1609661DOI10.1016/S0893-9659(98)00004-4
  24. 10.1016/S0764-4442(99)80153-0, C.  R. Acad. Sci. Paris Sér. I Math. 328 (1999), 145–150. (1999) Zbl1141.35340MR1669003DOI10.1016/S0764-4442(99)80153-0
  25. Exponential attractors for a class of evolution equations by a decomposition method. II. The nonautonomous case, C.  R. Acad. Sci. Paris Ser. I Math. 328 (1999), 907–912. (1999) MR1689877
  26. Some generalizations of the Cahn-Hilliard equation, Asymptotic Anal. 22 (2000), 235–259. (2000) Zbl0953.35055MR1753766
  27. 10.1016/S0362-546X(00)00104-8, Nonlinear Anal. Series  B 2 (2001), 273–304. (2001) Zbl0989.35066MR1835609DOI10.1016/S0362-546X(00)00104-8
  28. 10.1090/S0894-0347-1988-0943276-7, J.  Amer. Math. Soc.  1 (1988), 805–866. (1988) MR0943276DOI10.1090/S0894-0347-1988-0943276-7
  29. Nonautonomous differential equations and topological dynamics, I, II, Trans. Amer. Math. Soc. 127 (1967), 241–262, 263–283. (1967) 
  30. Global attractor for general nonautonomous dynamical systems, Nonlinear World 2 (1995), 191–216. (1995) Zbl0822.34048MR1376953
  31. 10.1016/S0362-546X(95)00229-O, Nonlinear Anal. 28 (1997), 1785–1797. (1997) Zbl0873.58044MR1432632DOI10.1016/S0362-546X(95)00229-O
  32. 10.1080/00036819308840194, Appl. Anal. 50 (1993), 217–241. (1993) Zbl0739.34052MR1278326DOI10.1080/00036819308840194
  33. Infinite Dimensional Dynamical Systems in Mechanics and Physics, 2nd ed, Springer-Verlag, New-York, 1997. (1997) Zbl0871.35001MR1441312

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.