An epidemic model with a time delay in transmission

Q. J. A. Khan; E. V. Krishnan

Applications of Mathematics (2003)

  • Volume: 48, Issue: 3, page 193-203
  • ISSN: 0862-7940

Abstract

top
We study a mathematical model which was originally suggested by Greenhalgh and Das and takes into account the delay in the recruitment of infected persons. The stability of the equilibria are also discussed. In addition, we show that the introduction of a time delay in the transmission term can destabilize the system and periodic solutions can arise by Hopf bifurcation.

How to cite

top

Khan, Q. J. A., and Krishnan, E. V.. "An epidemic model with a time delay in transmission." Applications of Mathematics 48.3 (2003): 193-203. <http://eudml.org/doc/33144>.

@article{Khan2003,
abstract = {We study a mathematical model which was originally suggested by Greenhalgh and Das and takes into account the delay in the recruitment of infected persons. The stability of the equilibria are also discussed. In addition, we show that the introduction of a time delay in the transmission term can destabilize the system and periodic solutions can arise by Hopf bifurcation.},
author = {Khan, Q. J. A., Krishnan, E. V.},
journal = {Applications of Mathematics},
keywords = {epidemic model; time delay; Hopf bifurcation; equilibrium analysis; differential equations; epidemic model; time delay; Hopf bifurcation; equilibrium analysis; differential equations},
language = {eng},
number = {3},
pages = {193-203},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {An epidemic model with a time delay in transmission},
url = {http://eudml.org/doc/33144},
volume = {48},
year = {2003},
}

TY - JOUR
AU - Khan, Q. J. A.
AU - Krishnan, E. V.
TI - An epidemic model with a time delay in transmission
JO - Applications of Mathematics
PY - 2003
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 48
IS - 3
SP - 193
EP - 203
AB - We study a mathematical model which was originally suggested by Greenhalgh and Das and takes into account the delay in the recruitment of infected persons. The stability of the equilibria are also discussed. In addition, we show that the introduction of a time delay in the transmission term can destabilize the system and periodic solutions can arise by Hopf bifurcation.
LA - eng
KW - epidemic model; time delay; Hopf bifurcation; equilibrium analysis; differential equations; epidemic model; time delay; Hopf bifurcation; equilibrium analysis; differential equations
UR - http://eudml.org/doc/33144
ER -

References

top
  1. 10.1017/S002217240002893X, J.  Hyg. 90 (1983), 259–325. (1983) DOI10.1017/S002217240002893X
  2. Differential Difference Equations, Academic Press, New York, 1963. (1963) MR0147745
  3. 10.1093/imammb/8.4.221, IMA J. Math. Appl. Med. Biol. 8 (1991), 221–247. (1991) DOI10.1093/imammb/8.4.221
  4. Analysis of a disease transmission model in a population with varying size, J.  Math. Biol. 29 (1990), 257–270. (1990) MR1047163
  5. Methods of Bifurcation Theory, Springer-Verlag, New York, 1982. (1982) MR0660633
  6. Ordinary and Delay Differential Equations, Applied Math. Sciences, Springer-Verlag, New York, 1977. (1977) Zbl0374.34001MR0477368
  7. Mathematical Methods and Models in Economic Dynamics, North Holland, London, 1971. (1971) Zbl0227.90010
  8. Stability and Oscillations in Delay Differential Equations of Population Dynamics, Academic Publisher, Dordrecht-Boston-London, 1992. (1992) Zbl0752.34039MR1163190
  9. 10.1006/tpbi.1995.1006, Theor. Popul. Biol. 47 (1995), 129–179. (1995) DOI10.1006/tpbi.1995.1006
  10. Introduction to Functional Differential Equations. Applied Math. Sciences  99, Springer-Verlag, New York, 1993. (1993) MR1243878
  11. Gonorrhoea transmission dynamics and control, Lecture Notes in Biomathematics, Vol. 56, Springer-Verlag, New York, 1974. (1974) MR0766910
  12. 10.1007/BF00276034, J.  Math. Biol. 9 (1980), 37–47. (1980) MR0648844DOI10.1007/BF00276034
  13. 10.1137/0140001, SIAM J.  Appl. Math. 40 (1981), 1–9. (1981) MR0602496DOI10.1137/0140001
  14. 10.1007/BF00275213, J.  Math. Biol. 13 (1981), 185–198. (1981) MR0661676DOI10.1007/BF00275213
  15. 10.1007/BF00276080, J.  Math. Biol. 27 (1989), 49–64. (1989) MR0984225DOI10.1007/BF00276080
  16. 10.1016/0025-5564(88)90031-4, Math. Biosci. 92 (1988), 119–199. (1988) MR0975856DOI10.1016/0025-5564(88)90031-4
  17. 10.2307/1905325, Econometrica 3 (1935), 327–344. (1935) DOI10.2307/1905325
  18. 10.2307/1911811, Econometrica 29 (1961), 659–669. (1961) MR0145984DOI10.2307/1911811
  19. Time Lags in Biological Models. Lecture Notes in Biomathematics Vol. 28, Springer-Verlag, Berlin-Heidelberg-New York, 1979. (1979) MR0521439
  20. 10.1016/0025-5564(88)90079-X, Math. Biosci. 90 (1988), 475–505. (1988) MR0958153DOI10.1016/0025-5564(88)90079-X
  21. The Hopf Bifurcation and Its Applications, Springer-Verlag, New York, 1976. (1976) MR0494309
  22. 10.1016/0025-5564(80)90069-3, Math. Biosci. 52 (1980), 227–240. (1980) MR0596176DOI10.1016/0025-5564(80)90069-3
  23. Global asymptotic stability for epidemic models. Equadiff 82, In: Lecture Notes in Mathematics Vol.  1017, H.  W.  Knobloch, K.  Schmitt (eds.), Springer-Verlag, Berlin, 1983, pp. 608–615. (1983) MR0726617
  24. Local stability in epidemic models for heterogeneous populations, In: Mathematics in Biology and Medicine. Lecture Notes in Biomathematics Vol. 57, V. Capasso, E.  Grosso and S.  L.  Paveri-Fontana (eds.), Springer-Verlag, Berlin, 1985, pp. 185–189. (1985) Zbl0584.92020MR0812889

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.